Solveeit Logo

Question

Question: If ∆ = \(\left| \begin{matrix} 1 + \sin^{2}x & \cos^{2}x & 4\cos^{2}x \\ \sin^{2}x & 1 + \cos^{2}x &...

If ∆ = 1+sin2xcos2x4cos2xsin2x1+cos2x4sin2xsin2xcos2x1+4sin2x\left| \begin{matrix} 1 + \sin^{2}x & \cos^{2}x & 4\cos^{2}x \\ \sin^{2}x & 1 + \cos^{2}x & 4\sin^{2}x \\ \sin^{2}x & \cos^{2}x & 1 + 4\sin^{2}x \end{matrix} \right| then the

maximum value of ∆ is –

A

4

B

6

C

8

D

10

Answer

6

Explanation

Solution

Apply C1 + C2 and then apply R2 – R1 and R3 – R1 and expand ∆ = 2 + 4 sin 2x

The maximum value of sin 2x is 1 and hence of ∆ is 6.