Solveeit Logo

Question

Question: If \(\left| \begin{matrix} 1 + ax & 1 + bx & 1 + cx \\ 1 + a_{1}x & 1 + b_{1}x & 1 + c_{1}x \\ 1 + a...

If 1+ax1+bx1+cx1+a1x1+b1x1+c1x1+a2x1+b2x1+c2x\left| \begin{matrix} 1 + ax & 1 + bx & 1 + cx \\ 1 + a_{1}x & 1 + b_{1}x & 1 + c_{1}x \\ 1 + a_{2}x & 1 + b_{2}x & 1 + c_{2}x \end{matrix} \right|

= A0+A1x+A2x2 + A3x3, then A0 is equal to-

A

abc

B

1

C

0

D

None of these

Answer

0

Explanation

Solution

On putting x = 0 both sides we get

111111111\left| \begin{matrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{matrix} \right| = A0 ⇒ A0 = 0