Solveeit Logo

Question

Question: If ∆ = \(\left| \begin{matrix} 1 & a & bc \\ 1 & b & ca \\ 1 & c & ab \end{matrix} \right| = \left| ...

If ∆ = 1abc1bca1cab=1aa21bb21cc2\left| \begin{matrix} 1 & a & bc \\ 1 & b & ca \\ 1 & c & ab \end{matrix} \right| = \left| \begin{matrix} 1 & a & a^{2} \\ 1 & b & b^{2} \\ 1 & c & c^{2} \end{matrix} \right| then

A

∆ = (a-b) (b-c) (c-a)

B

a, b, c are in G.P.

C

b, c, a are in G.P.

D

a, c, b are in G.P.

Answer

∆ = (a-b) (b-c) (c-a)

Explanation

Solution

Here ∆ = ⥄⥄1abc1bca1cab⥄⥄=1abcaa2abcbb2abccc2abc\left| ⥄ ⥄ \begin{matrix} 1 & a & bc \\ 1 & b & ca \\ 1 & c & ab \end{matrix} ⥄ ⥄ \right| = \frac{1}{abc}\left| \begin{matrix} a & a^{2} & abc \\ b & b^{2} & abc \\ c & c^{2} & abc \end{matrix} \right|= 1aa21bb21cc2\left| \begin{matrix} 1 & a & a^{2} \\ 1 & b & b^{2} \\ 1 & c & c^{2} \end{matrix} \right|

= (a - b) (b – c) (c – a).