Question
Question: If \(\left| \begin{matrix} 1 & 1 & 1 \\ a & b & c \\ a^{3} & b^{3} & c^{3} \end{matrix} \right| = (a...
If 1aa31bb31cc3=(a−b)(b−c)(c−a)(a+b+c) Where a, b, c
are all different, then the determinant
1(x−a)2(x−b)(x−c)1(x−b)2(x−c)(x−a)1(x−c)2(x−a)(x−b)vanishes when
A
a+b+c=0
B
x=31(a+b+c)
C
x=21(a+b+c)
D
x=a+b+c
Answer
x=31(a+b+c)
Explanation
Solution
∵ 1aa31bb31cc3=(a−b)(b−c)(c−a)(a+b+c) …… (i)
Now, 1(x−a)2(x−b)(x−c)1(x−b)2(x−c)(x−a)1(x−c)2(x−a)(x−b)=0
⇒ (x−a)(x−b)(x−c)1(x−a)(x−a)3(x−a)(x−b)(x−c)(x−b)(x−b)3(x−a)(x−b)(x−c)(x−c)(x−c)3(x−a)(x−b)(x−c)=0Applying C1→C1(x−a),C2→C2(x−b),C3→C3(x−c)
(x - a) & (x - b) & (x - c) \\ (x - a)^{3} & (x - b)^{3} & (x - c)^{3} \\ 1 & 1 & 1 \end{matrix} \right| = 0$$ $${\lbrack(x - a) - (x - b)\rbrack\lbrack(x - b) - (x - c)\rbrack\lbrack(x - c) - (x - a)\rbrack }{(x - a + x - b + x - c) = 0}$$ $(b - a)(c - b)(a - c)\lbrack 3x - (a + b + c)\rbrack = 0$ or $x = \frac{1}{3}(a + b + c)$ $\lbrack\because a \neq b \neq c\rbrack$