Question
Question: If \(\left| \begin{matrix} - a^{2} & ab & ac \\ ab & - b^{2} & bc \\ ac & bc & - c^{2} \end{matrix}...
If $\left| \begin{matrix}
- a^{2} & ab & ac \ ab & - b^{2} & bc \ ac & bc & - c^{2} \end{matrix} \right|$ = k a2b2c2, then k is equal to-
A
– 4
B
8
C
2
D
4
Answer
4
Explanation
Solution
abc $\left| \begin{matrix}
- a & b & c \ a & - b & c \ a & b & - c \end{matrix} \right|$ = k a2 b2c2
⇒ (abc)2$\left| \begin{matrix}
- 1 & 1 & 1 \ 1 & - 1 & 1 \ 1 & 1 & - 1 \end{matrix} \right|$= k a2 b2c2
R1→R1+R2 0110−1121−1= k⇒2 (2) = k ⇒ k = 4