Solveeit Logo

Question

Question: If \(\left| \begin{matrix} - a^{2} & ab & ac \\ ab & - b^{2} & bc \\ ac & bc & - c^{2} \end{matrix}...

If $\left| \begin{matrix}

  • a^{2} & ab & ac \ ab & - b^{2} & bc \ ac & bc & - c^{2} \end{matrix} \right|$ = k  a2b2c2, then k is equal to-
A

– 4

B

8

C

2

D

4

Answer

4

Explanation

Solution

abc $\left| \begin{matrix}

  • a & b & c \ a & - b & c \ a & b & - c \end{matrix} \right|$ = k a2 b2c2

⇒ (abc)2$\left| \begin{matrix}

  • 1 & 1 & 1 \ 1 & - 1 & 1 \ 1 & 1 & - 1 \end{matrix} \right|$= k a2 b2c2

R1→R1+R2 002111111\left| \begin{matrix} 0 & 0 & 2 \\ 1 & - 1 & 1 \\ 1 & 1 & - 1 \end{matrix} \right|= k⇒2 (2) = k ⇒ k = 4