Solveeit Logo

Question

Mathematics Question on Differentiability

If \left\\{ \begin{matrix} \frac{(1-\cos \,4x)}{{{x}^{2}}}, & if & x<0 \\\ a, & if & x=0, \\\ \frac{\sqrt{x}}{\sqrt{(16+\sqrt{x})}-4}, & if & x>0 \\\ \end{matrix} \right. then f(x)f(x) is continuous at x=0,x=0, for a=?a = ?

A

44

B

32\sqrt{32}

C

88

D

1616

Answer

88

Explanation

Solution

Given, f(x)=\left\\{ \begin{matrix} \frac{(1-\cos 4x)}{{{x}^{2}}}, & if & x<0 \\\ a, & if & x=0 \\\ \frac{\sqrt{x}}{\sqrt{(16+\sqrt{x})-4}}, & if & x > 0 \\\ \end{matrix} \right.
LHL= f(00)=limh0f(0h)f(0-0)=\underset{h\to 0}{\mathop{\lim }}\,f(0-h)
limh01cos4(0h)(0h)2\underset{h\to 0}{\mathop{\lim }}\,\frac{1-\cos \,4(0-h)}{{{(0-h)}^{2}}}
=\underset{h\to 0}{\mathop{\lim }}\,\frac{\left\\{ \frac{{{(-4h)}^{2}}}{2!}-\frac{{{(-4h)}^{4}}}{4!}+..... \right\\}}{{{(-h)}^{2}}}
=\underset{h\to 0}{\mathop{\lim }}\,\,\left\\{ \frac{\frac{16{{h}^{2}}}{2!}-\frac{{{(-4h)}^{4}}}{4!}+....}{{{(-h)}^{2}}} \right\\}
=limh0162!42h24!+....=\underset{h\to 0}{\mathop{\lim }}\,\,\,\frac{16}{2!}-\frac{{{4}^{2}}{{h}^{2}}}{4!}+....
RHL =f(0+0)=limh0f(0+h)=f(0+0)=\underset{h\to 0}{\mathop{\lim }}\,\,f(0+h)
=limh0h16+h4=\underset{h\to 0}{\mathop{\lim }}\,\,\,\frac{\sqrt{h}}{\sqrt{16+\sqrt{h}}-4}
(00form)\left( \frac{0}{0}\,form \right)
Using L- Hospital rule,
=limh012h×1216+h12h=\underset{h\to 0}{\mathop{\lim }}\,\,\frac{1}{2\sqrt{h}}\times \frac{1}{2\sqrt{16+\sqrt{h}\frac{1}{2\sqrt{h}}}}
=limh0216+h=216+0=\underset{h\to 0}{\mathop{\lim }}\,\,2\sqrt{16+\sqrt{h}}=2\sqrt{16+0}
=2×4=8=2\times 4=8
Since, f(x)f(x) is continuous at x=0.x=0.
\therefore LHL=RHL=f(0)LHL=RHL=f(0)
\Rightarrow a=8a=8