Question
Mathematics Question on Differentiability
If \left\\{ \begin{matrix} \frac{(1-\cos \,4x)}{{{x}^{2}}}, & if & x<0 \\\ a, & if & x=0, \\\ \frac{\sqrt{x}}{\sqrt{(16+\sqrt{x})}-4}, & if & x>0 \\\ \end{matrix} \right. then f(x) is continuous at x=0, for a=?
4
32
8
16
8
Solution
Given, f(x)=\left\\{ \begin{matrix} \frac{(1-\cos 4x)}{{{x}^{2}}}, & if & x<0 \\\ a, & if & x=0 \\\ \frac{\sqrt{x}}{\sqrt{(16+\sqrt{x})-4}}, & if & x > 0 \\\ \end{matrix} \right.
LHL= f(0−0)=h→0limf(0−h)
h→0lim(0−h)21−cos4(0−h)
=\underset{h\to 0}{\mathop{\lim }}\,\frac{\left\\{ \frac{{{(-4h)}^{2}}}{2!}-\frac{{{(-4h)}^{4}}}{4!}+..... \right\\}}{{{(-h)}^{2}}}
=\underset{h\to 0}{\mathop{\lim }}\,\,\left\\{ \frac{\frac{16{{h}^{2}}}{2!}-\frac{{{(-4h)}^{4}}}{4!}+....}{{{(-h)}^{2}}} \right\\}
=h→0lim2!16−4!42h2+....
RHL =f(0+0)=h→0limf(0+h)
=h→0lim16+h−4h
(00form)
Using L- Hospital rule,
=h→0lim2h1×216+h2h11
=h→0lim216+h=216+0
=2×4=8
Since, f(x) is continuous at x=0.
∴ LHL=RHL=f(0)
⇒ a=8