Question
Question: If \( \left| {\begin{matrix} a & {{a^2}} & {1 + {a^3}} \\\ b & {{b^2}} & {1 + {b^3}} \\\ ...
If a b c a2b2c21+a31+b31+c3=0 and the vectors A =(1,a,a2), B =(1,b,b2), C =(1,c,c2)are non-coplanar, then find the value of the product rule abc.
A. 0
B. 1
C. -1
D. None of these
Solution
Using the definition of non-coplanar vectors, it is known that$\Delta = \left| {\begin{matrix}
1 & a & {{a^2}} \\
1 & b & {{b^2}} \\
1 & c & {{c^2}} \\
\end{matrix} } \right| \ne 0.Thatistheirscalartripleproductisnotequaltozero.Andusingmatrixregularsplitting,wewillsplitthegivenmatrix \left| {\begin{matrix}
a & {{a^2}} & {1 + {a^3}} \\
b & {{b^2}} & {1 + {b^3}} \\
c & {{c^2}} & {1 + {c^3}} \\
\end{matrix} } \right| $ into two matrices. This provides us to find the value the ‘abc’ by taking the common matrix from the two matrices.
Complete step-by-step answer:
Since(1,a,a2),(1,b,b2),(1,c,c2)are non-coplanar
$\Delta = \left| {\begin{matrix}
1 & a & {{a^2}} \\
1 & b & {{b^2}} \\
1 & c & {{c^2}} \\
\end{matrix} } \right| \ne 0…(1)Sincethethreeproductsarenon−coplanar,theirscalartripleproductisnotequaltozero.Thatissimplytheirdeterminantisnotzero.Iftwovectors(theircarrierlines)don’tintersect,thereisnocommonplane,sothevectors(andalsothelines)aresaidtobenon−coplanar.Given \left| {\begin{matrix}
a & {{a^2}} & {1 + {a^3}} \\
b & {{b^2}} & {1 + {b^3}} \\
c & {{c^2}} & {1 + {c^3}} \\
\end{matrix} } \right| = 0 Thedeterminantisascalarvaluethatcanbecomputedfromtheelementsofasquarematrixandencodescertainpropertiesofthelineartransformationdescribedbythematrix.ThedeterminantofamatrixAisdenoteddet(A),detAor\left| {\text{A}} \right|. \Rightarrow \left| {\begin{matrix}
a & {{a^2}} & 1 \\
b & {{b^2}} & 1 \\
c & {{c^2}} & 1 \\
\end{matrix} } \right| + \left| {\begin{matrix}
a & {{a^2}} & {{a^3}} \\
b & {{b^2}} & {{b^3}} \\
c & {{c^2}} & {{c^3}} \\
\end{matrix} } \right| = 0 Amatrixsplittingisanexpressionwhichrepresentsagivenmatrixasasumordifferenceofmatrices.Wehaveregularsplitting’sandmatrixiterativemethodsforsplittingofmatrices. \Rightarrow \left( {1 + abc} \right)\left| {\begin{matrix}
1 & a & {{a^2}} \\
1 & b & {{b^2}} \\
1 & c & {{c^2}} \\
\end{matrix} } \right| = 0 Wehadnowtakencommonvaluefromthebothmatrices. \Rightarrow \left( {1 + abc} \right)\Delta = 0 From(1) \Delta \ne 0 ,weget1+abc=0 \Rightarrow abc = - 1$
So, the correct answer is “Option C”.
Note: We can solve the problems on coplanar vectors in the same way, where the three vectors are coplanar if their scalar triple product is zero. The three vectors are coplanar if they are linearly dependent. For n vectors, vectors are coplanar if among them no more than two linearly independent vectors.