Solveeit Logo

Question

Question: If \(\left[ \begin{matrix} 1 & 1 \\\ 0 & 1 \\\ \end{matrix} \right]\left[ \begin{matrix}...

If [11 01 ][12 01 ][13 01 ][1n1 01 ]=[178 01 ]\left[ \begin{matrix} 1 & 1 \\\ 0 & 1 \\\ \end{matrix} \right]\left[ \begin{matrix} 1 & 2 \\\ 0 & 1 \\\ \end{matrix} \right]\left[ \begin{matrix} 1 & 3 \\\ 0 & 1 \\\ \end{matrix} \right]\cdots \left[ \begin{matrix} 1 & n-1 \\\ 0 & 1 \\\ \end{matrix} \right]=\left[ \begin{matrix} 1 & 78 \\\ 0 & 1 \\\ \end{matrix} \right], then the inverse of [1n 01 ]\left[ \begin{matrix} 1 & n \\\ 0 & 1 \\\ \end{matrix} \right] is
[a] [113 01 ]\left[ \begin{matrix} 1 & -13 \\\ 0 & 1 \\\ \end{matrix} \right]
[b] [10 121 ]\left[ \begin{matrix} 1 & 0 \\\ 12 & 1 \\\ \end{matrix} \right]
[c] [112 01 ]\left[ \begin{matrix} 1 & -12 \\\ 0 & 1 \\\ \end{matrix} \right]
[d] [10 131 ]\left[ \begin{matrix} 1 & 0 \\\ 13 & 1 \\\ \end{matrix} \right]

Explanation

Solution

Assume that [11 01 ][12 01 ][13 01 ][1n 01 ]=[1f(n) 01 ]\left[ \begin{matrix} 1 & 1 \\\ 0 & 1 \\\ \end{matrix} \right]\left[ \begin{matrix} 1 & 2 \\\ 0 & 1 \\\ \end{matrix} \right]\left[ \begin{matrix} 1 & 3 \\\ 0 & 1 \\\ \end{matrix} \right]\cdots \left[ \begin{matrix} 1 & n \\\ 0 & 1 \\\ \end{matrix} \right]=\left[ \begin{matrix} 1 & f\left( n \right) \\\ 0 & 1 \\\ \end{matrix} \right]. Form a recursive relation for f(n) and solve for f(n) by considering the product [1f(n1) 01 ][1n 01 ]=[1f(n) 01 ]\left[ \begin{matrix} 1 & f\left( n-1 \right) \\\ 0 & 1 \\\ \end{matrix} \right]\left[ \begin{matrix} 1 & n \\\ 0 & 1 \\\ \end{matrix} \right]=\left[ \begin{matrix} 1 & f\left( n \right) \\\ 0 & 1 \\\ \end{matrix} \right]. Hence find the value of n satisfying f(n1)=78f\left( n-1 \right)=78 and hence find the inverse of [1n 01 ]\left[ \begin{matrix} 1 & n \\\ 0 & 1 \\\ \end{matrix} \right].

Complete step-by-step solution:
Let us take [11 01 ][12 01 ][13 01 ][1n 01 ]=[1f(n) 01 ]\left[ \begin{matrix} 1 & 1 \\\ 0 & 1 \\\ \end{matrix} \right]\left[ \begin{matrix} 1 & 2 \\\ 0 & 1 \\\ \end{matrix} \right]\left[ \begin{matrix} 1 & 3 \\\ 0 & 1 \\\ \end{matrix} \right]\cdots \left[ \begin{matrix} 1 & n \\\ 0 & 1 \\\ \end{matrix} \right]=\left[ \begin{matrix} 1 & f\left( n \right) \\\ 0 & 1 \\\ \end{matrix} \right]
Replacing n by n-1, we get
[11 01 ][12 01 ][13 01 ][1n1 01 ]=[1f(n1) 01 ]\left[ \begin{matrix} 1 & 1 \\\ 0 & 1 \\\ \end{matrix} \right]\left[ \begin{matrix} 1 & 2 \\\ 0 & 1 \\\ \end{matrix} \right]\left[ \begin{matrix} 1 & 3 \\\ 0 & 1 \\\ \end{matrix} \right]\cdots \left[ \begin{matrix} 1 & n-1 \\\ 0 & 1 \\\ \end{matrix} \right]=\left[ \begin{matrix} 1 & f\left( n-1 \right) \\\ 0 & 1 \\\ \end{matrix} \right]
Hence, we have
[1f(n1) 01 ][1n 01 ]=[1f(n) 01 ]\left[ \begin{matrix} 1 & f\left( n-1 \right) \\\ 0 & 1 \\\ \end{matrix} \right]\left[ \begin{matrix} 1 & n \\\ 0 & 1 \\\ \end{matrix} \right]=\left[ \begin{matrix} 1 & f\left( n \right) \\\ 0 & 1 \\\ \end{matrix} \right]
Now, performing matrix multiplication, we have
[1n+f(n1) 01 ]=[1f(n) 01 ]\left[ \begin{matrix} 1 & n+f\left( n-1 \right) \\\ 0 & 1 \\\ \end{matrix} \right]=\left[ \begin{matrix} 1 & f\left( n \right) \\\ 0 & 1 \\\ \end{matrix} \right]
Equating elements of both matrices, we get
n+f(n1)=f(n) f(n)f(n1)=n \begin{aligned} & n+f\left( n-1 \right)=f\left( n \right) \\\ & \Rightarrow f\left( n \right)-f\left( n-1 \right)=n \\\ \end{aligned}
Replacing n by n-1, we get
f(n1)f(n2)=n1f\left( n-1 \right)-f\left( n-2 \right)=n-1
Replacing n by n-1, we get
f(n2)f(n3)=n2                                   \begin{aligned} & f\left( n-2 \right)-f\left( n-3 \right)=n-2 \\\ & \vdots \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \vdots \ \ \ \ \ \ \ \ \ \ \ \ \ \vdots \\\ \end{aligned}
Continuing this way, we get
f(2)f(1)=2f\left( 2 \right)-f\left( 1 \right)=2
Adding all these equations formed, we get
f(n)f(n1)+f(n1)f(n2)++f(2)f(1)=n+n1+n2++2 f(n)f(1)=2+3+4++n \begin{aligned} & f\left( n \right)-f\left( n-1 \right)+f\left( n-1 \right)-f\left( n-2 \right)+\cdots +f\left( 2 \right)-f\left( 1 \right)=n+n-1+n-2+\cdots +2 \\\ & \Rightarrow f\left( n \right)-f\left( 1 \right)=2+3+4+\cdots +n \\\ \end{aligned}
Also, we have
[11 01 ]=[1f(1) 01 ]\left[ \begin{matrix} 1 & 1 \\\ 0 & 1 \\\ \end{matrix} \right]=\left[ \begin{matrix} 1 & f\left( 1 \right) \\\ 0 & 1 \\\ \end{matrix} \right]
Hence, we have
f(1) = 1
Hence, we have
f(n)=1+2++nf\left( n \right)=1+2+\cdots +n
We know that the sum of the first n natural numbers is n(n+1)2\dfrac{n\left( n+1 \right)}{2}
Hence, we have
f(n)=n(n+1)2f\left( n \right)=\dfrac{n\left( n+1 \right)}{2}
From the given equation, we have
f(n1)=78 n(n1)2=78 n2n=156 n2n156=0 \begin{aligned} & f\left( n-1 \right)=78 \\\ & \Rightarrow \dfrac{n\left( n-1 \right)}{2}=78 \\\ & \Rightarrow {{n}^{2}}-n=156 \\\ & \Rightarrow {{n}^{2}}-n-156=0 \\\ \end{aligned}
We solve this quadratic equation using splitting the middle term method
We have 1312=113-12=1 and 13×12=15613\times 12=156
Hence, we have
n213n+12n156=0{{n}^{2}}-13n+12n-156=0
Taking n common from the first two terms and 12 common from the last two terms, we get
n(n13)+12(n13)=0n\left( n-13 \right)+12\left( n-13 \right)=0
Taking n-13 common from the two terms, we get
(n+12)(n13)=0\left( n+12 \right)\left( n-13 \right)=0
Since n is natural number n > 0 and hence n + 12 > 0
Hence, we have
n13=0 n=13 \begin{aligned} & n-13=0 \\\ & \Rightarrow n=13 \\\ \end{aligned}
Hence, the matrix M=[1n 01 ]M=\left[ \begin{matrix} 1 & n \\\ 0 & 1 \\\ \end{matrix} \right] is given by M=[113 01 ]M=\left[ \begin{matrix} 1 & 13 \\\ 0 & 1 \\\ \end{matrix} \right]
Here det(M) = 1
We know that A=[ab cd ]A1=1detA[db ca ]A=\left[ \begin{matrix} a & b \\\ c & d \\\ \end{matrix} \right]\Rightarrow {{A}^{-1}}=\dfrac{1}{\det A}\left[ \begin{matrix} d & -b \\\ -c & a \\\ \end{matrix} \right]
Hence, we have
M1=[113 01 ]{{M}^{-1}}=\left[ \begin{matrix} 1 & -13 \\\ 0 & 1 \\\ \end{matrix} \right]
Hence option [a] is correct.

Note: The equations of the form TnTn1=g(n){{T}_{n}}-{{T}_{n-1}}=g\left( n \right) form a telescopic series on writing down of all terms and hence Tn=T1+i=2ng(i){{T}_{n}}={{T}_{1}}+\sum\limits_{i=2}^{n}{g\left( i \right)}. Although we have shown how the total sum comes, the student is advised to remember the result