Question
Question: If \(\left( {\begin{array}{*{20}{c}} {\dfrac{1}{{25}}}&0 \\\ x&{\dfrac{1}{{25}}} \end{ar...
If \left( {\begin{array}{*{20}{c}} {\dfrac{1}{{25}}}&0 \\\ x&{\dfrac{1}{{25}}} \end{array}} \right) = {\left( {\begin{array}{*{20}{c}} 5&0 \\\ { - a}&5 \end{array}} \right)^{ - 2}}, then the value of x is
A. 125a
B. 1252a
C. 252a
D. None of these
Solution
Hint: If a matrix is A = \left( {\begin{array}{*{20}{c}} a&b; \\\ c&d; \end{array}} \right), then the inverse of the matrix is, {A^{ - 1}} = \dfrac{1}{{\det A}}\left( {\begin{array}{*{20}{c}} d&{ - b} \\\ { - c}&a; \end{array}} \right), use this to solve.
Complete step-by-step answer:
We have been given in the question, \left( {\begin{array}{*{20}{c}} {\dfrac{1}{{25}}}&0 \\\ x&{\dfrac{1}{{25}}} \end{array}} \right) = {\left( {\begin{array}{*{20}{c}} 5&0 \\\ { - a}&5 \end{array}} \right)^{ - 2}},
Now let A = \left( {\begin{array}{*{20}{c}}
5&0 \\\
{ - a}&5
\end{array}} \right), so we can find the inverse of the matrix by using the formula,
{A^{ - 1}} = \dfrac{1}{{\det A}}\left( {\begin{array}{*{20}{c}}
d&{ - b} \\\
{ - c}&a;
\end{array}} \right),
Therefore, detA=25,
Hence, the inverse is, {A^{ - 1}} = \dfrac{1}{{25}}\left( {\begin{array}{*{20}{c}}
5&0 \\\
a&5
\end{array}} \right),
So, the given equation becomes, \left( {\begin{array}{*{20}{c}}
{\dfrac{1}{{25}}}&0 \\\
x&{\dfrac{1}{{25}}}
\end{array}} \right) = {A^{ - 2}} - (1)
Therefore, {(A)^{ - 2}} = \dfrac{1}{{625}}{\left( {\begin{array}{*{20}{c}}
5&0 \\\
a&5
\end{array}} \right)^2} = \dfrac{1}{{625}}\left( {\begin{array}{*{20}{c}}
{25}&0 \\\
{10a}&{25}
\end{array}} \right) = \left( {\begin{array}{*{20}{c}}
{\dfrac{1}{{25}}}&0 \\\
{\dfrac{{2a}}{{125}}}&{\dfrac{1}{{25}}}
\end{array}} \right)
Now put the value of A−2in equation (1), we get,
\left( {\begin{array}{*{20}{c}}
{\dfrac{1}{{25}}}&0 \\\
x&{\dfrac{1}{{25}}}
\end{array}} \right) = \left( {\begin{array}{*{20}{c}}
{\dfrac{1}{{25}}}&0 \\\
{\dfrac{{2a}}{{125}}}&{\dfrac{1}{{25}}}
\end{array}} \right) \\\
\Rightarrow x = \dfrac{{2a}}{{125}} \\\
Hence, we get the value of x as 2a/125, after solving the equations.
So, the correct answer is B. 1252a.
Note- Whenever such types of questions appear, be careful while finding the inverse of a matrix, use the formula, {A^{ - 1}} = \dfrac{1}{{\det A}}\left( {\begin{array}{*{20}{c}} d&{ - b} \\\ { - c}&a; \end{array}} \right), only when the matrix is a 2×2 matrix. After finding the value of A−2, put in the given equation and solve it to find the value of x.