Question
Question: If \[{\left| {\begin{array}{*{20}{c}} {\cos \dfrac{{2\pi }}{7}}&{ - \sin \dfrac{{2\pi }}{7}} \\\...
If {\left| {\begin{array}{*{20}{c}}
{\cos \dfrac{{2\pi }}{7}}&{ - \sin \dfrac{{2\pi }}{7}} \\\
{\sin \dfrac{{2\pi }}{7}}&{\cos \dfrac{{2\pi }}{7}}
\end{array}} \right|^k} = \left| {\begin{array}{*{20}{c}}
1&0 \\\
0&1
\end{array}} \right|, then the least positive integral value of k is:
A. 3
B. 4
C. 6
D. 7
Solution
According to the question, first we will assign 72π=θ. Then, we will square the given matrix. This means that in place of ‘k’, we will take the power to be 2. Then we will solve the matrix and again replace 2 from ‘k’. Now, we will try to solve for ‘k’ and get its value
Formulae Used:
cos2θ=cos2θ−sin2θ and sin2θ=2cosθsinθ
Complete step by step answer:
The given matrix is:
{\left| {\begin{array}{{20}{c}}
{\cos \theta }&{ - \sin \theta } \\
{\sin \theta }&{\cos \theta }
\end{array}} \right|^2} = \left| {\begin{array}{{20}{c}}
{\cos \theta }&{ - \sin \theta } \\
{\sin \theta }&{\cos \theta }
\end{array}} \right|\left| {\begin{array}{{20}{c}}
{\cos \theta }&{ - \sin \theta } \\
{\sin \theta }&{\cos \theta }
\end{array}} \right| \\
\Rightarrow {\left| {\begin{array}{{20}{c}}
{\cos \theta }&{ - \sin \theta } \\
{\sin \theta }&{\cos \theta }
\end{array}} \right|^2} = \left| {\begin{array}{*{20}{c}}
{{{\cos }^2}\theta - {{\sin }^2}\theta }&{ - 2\cos \theta \sin \theta } \\
{2\sin \theta \cos \theta }&{ - {{\sin }^2}\theta + {{\cos }^2}\theta }
\end{array}} \right| \\