Question
Question: If \[\left| {\begin{array}{*{20}{c}} a&b;&c; \\\ m&n;&p; \\\ x&y;&z; \end{array}} \...
If \left| {\begin{array}{*{20}{c}}
a&b;&c; \\\
m&n;&p; \\\
x&y;&z;
\end{array}} \right| = k, then \left| {\begin{array}{*{20}{c}}
{6a}&{2b}&{2c} \\\
{3m}&n;&p; \\\
{3x}&y;&z;
\end{array}} \right| =
A. 6k
B. 2k
C. 3k
D. 6k
Solution
Hint: By using the properties of determinants, first of all take the common term in the first column and then take the common term in the first row of the determinant. So, use this concept to reach the solution of the given problem.
Complete step-by-step answer:
Given \left| {\begin{array}{*{20}{c}}
a&b;&c; \\\
m&n;&p; \\\
x&y;&z;
\end{array}} \right| = k............................................\left( 1 \right)
Now consider \left| {\begin{array}{*{20}{c}}
{6a}&{2b}&{2c} \\\
{3m}&n;&p; \\\
{3x}&y;&z;
\end{array}} \right|
We know if there is a common term in any row or column of a determinant, then we can take it common by multiplying the common terms with the determinant.