Question
Question: If \[\left| {\begin{array}{*{20}{c}} {{a^2}}&{{b^2}}&{{c^2}} \\\ {{{(a + \lambda )}^2}}&{{{...
If \left| {\begin{array}{*{20}{c}}
{{a^2}}&{{b^2}}&{{c^2}} \\\
{{{(a + \lambda )}^2}}&{{{(b + \lambda )}^2}}&{{{(c + \lambda )}^2}} \\\
{{{(a - \lambda )}^2}}&{{{(b - \lambda )}^2}}&{{{(c - \lambda )}^2}}
\end{array}} \right| = k\lambda \left| {\begin{array}{*{20}{c}}
{{a^2}}&{{b^2}}&{{c^2}} \\\
a&b;&c; \\\
1&1&1
\end{array}} \right| , λ=0, then k is equal to
A. 4λabc
B. −4λabc
C. 4λ2
D. −4λ2
Explanation
Solution
Here we use the concept of row transformations to convert the matrix on the left side as the matrix on the right hand side. Use the formula (a+b)2=a2+b2+2ab,(a−b)2=a2+b2−2ab to open up the values in the determinant. We bring out the constants from each row as we convert the row to a similar row on the right hand side.
- If a row in the matrix contains elements which all have a common factor say p, then we can bring out the factor from the matrix.