Solveeit Logo

Question

Question: If \(\left| a \right|=\left| b \right|=1\) and \(\left| a+b \right|=\sqrt{3}\), then the value of \(...

If a=b=1\left| a \right|=\left| b \right|=1 and a+b=3\left| a+b \right|=\sqrt{3}, then the value of (3a4b)(2a+5b)\left( 3a-4b \right)\left( 2a+5b \right) is
A. 21-21
B. 212-\dfrac{21}{2}
C. 21
D. 212\dfrac{21}{2}

Explanation

Solution

We first need to remove the modulus functions. We take the square value to get rid of the modulus function. We get the values of a2,b2,(a+b)2{{a}^{2}},{{b}^{2}},{{\left( a+b \right)}^{2}}. We use the square formula of (a+b)2=a2+b2+2ab{{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab. We put the values to get the value of abab. We complete the multiplication of (3a4b)(2a+5b)\left( 3a-4b \right)\left( 2a+5b \right) and get the final solution.

Complete step by step answer:
The given condition is a=b=1\left| a \right|=\left| b \right|=1. We take the square value to get rid of the modulus function.
We get a2=b2=1{{a}^{2}}={{b}^{2}}=1. Applying similar thing for a+b=3\left| a+b \right|=\sqrt{3}, we get (a+b)2=3{{\left( a+b \right)}^{2}}=3.
Now we break the square using (a+b)2=a2+b2+2ab{{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab.
Putting the values, we get
(a+b)2=a2+b2+2ab 3=1+1+2ab ab=12 \begin{aligned} & {{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab \\\ & \Rightarrow 3=1+1+2ab \\\ & \Rightarrow ab=\dfrac{1}{2} \\\ \end{aligned}
We now complete the multiplication of (3a4b)(2a+5b)\left( 3a-4b \right)\left( 2a+5b \right).
(3a4b)(2a+5b)=6a220b2+7ab\left( 3a-4b \right)\left( 2a+5b \right)=6{{a}^{2}}-20{{b}^{2}}+7ab
We put the values to get
(3a4b)(2a+5b) =6a220b2+7ab =6×120×1+7×12 =7214 =212 \begin{aligned} & \left( 3a-4b \right)\left( 2a+5b \right) \\\ & =6{{a}^{2}}-20{{b}^{2}}+7ab \\\ & =6\times 1-20\times 1+7\times \dfrac{1}{2} \\\ & =\dfrac{7}{2}-14 \\\ & =-\dfrac{21}{2} \\\ \end{aligned}
Therefore, the value of (3a4b)(2a+5b)\left( 3a-4b \right)\left( 2a+5b \right) is 212-\dfrac{21}{2}. The correct option is option (B).

Note:
We use the modulus function to get the distance or length in general. That becomes without the sign. The vector form changes it to scalar form. Therefore, without taking square value we cannot use the modulus function in any simplification.