Solveeit Logo

Question

Question: If \({{\left( 20 \right)}^{19}}+2\left( 21 \right){{\left( 20 \right)}^{18}}+3{{\left( 21 \right)}^{...

If (20)19+2(21)(20)18+3(21)2(20)17+.......+20(21)19=k(20)19{{\left( 20 \right)}^{19}}+2\left( 21 \right){{\left( 20 \right)}^{18}}+3{{\left( 21 \right)}^{2}}{{\left( 20 \right)}^{17}}+.......+20{{\left( 21 \right)}^{19}}=k{{\left( 20 \right)}^{19}} then kk is equal to:
(a) 400
(b) 100
(c) 441
(d) 420

Explanation

Solution

Here in this question we have been asked to find the value of kk in the given equation (20)19+2(21)(20)18+3(21)2(20)17+.......+20(21)19=k(20)19{{\left( 20 \right)}^{19}}+2\left( 21 \right){{\left( 20 \right)}^{18}}+3{{\left( 21 \right)}^{2}}{{\left( 20 \right)}^{17}}+.......+20{{\left( 21 \right)}^{19}}=k{{\left( 20 \right)}^{19}} . To answer this question, we will take out (20)19{{\left( 20 \right)}^{19}} in common from the left side of the expression and then simplify the remaining part of the expression.

Complete step-by-step solution:
Now considering from the question we have been asked to find the value of kk in the given equation (20)19+2(21)(20)18+3(21)2(20)17+.......+20(21)19=k(20)19{{\left( 20 \right)}^{19}}+2\left( 21 \right){{\left( 20 \right)}^{18}}+3{{\left( 21 \right)}^{2}}{{\left( 20 \right)}^{17}}+.......+20{{\left( 21 \right)}^{19}}=k{{\left( 20 \right)}^{19}} .
Now we will take out (20)19{{\left( 20 \right)}^{19}} as common from the left side of the expression to simplify the expression.
By doing that we will have (20)19[1+2(2120)+3(2120)2+......+20(2120)19]=k(20)19\Rightarrow {{\left( 20 \right)}^{19}}\left[ 1+2\left( \dfrac{21}{20} \right)+3{{\left( \dfrac{21}{20} \right)}^{2}}+......+20{{\left( \dfrac{21}{20} \right)}^{19}} \right]=k{{\left( 20 \right)}^{19}} .
Hence we can say that
1+2(2120)+3(2120)2+......+20(2120)19=k\Rightarrow 1+2\left( \dfrac{21}{20} \right)+3{{\left( \dfrac{21}{20} \right)}^{2}}+......+20{{\left( \dfrac{21}{20} \right)}^{19}}=k ………………………….(1)
Now we will multiply this expression with (2120)\left( \dfrac{21}{20} \right) after doing that we will have k(2120)=(2120)+2(2120)2+3(2120)3+......+20(2120)20\Rightarrow k\left( \dfrac{21}{20} \right)=\left( \dfrac{21}{20} \right)+2{{\left( \dfrac{21}{20} \right)}^{2}}+3{{\left( \dfrac{21}{20} \right)}^{3}}+......+20{{\left( \dfrac{21}{20} \right)}^{20}} ………………….(2)
Now we will simplify the expression by subtracting eq.2 from eq.1 as follows:
k(12120)=1+(2120)+(2120)2+......20(2120)20\Rightarrow k\left( 1-\dfrac{21}{20} \right)=1+\left( \dfrac{21}{20} \right)+{{\left( \dfrac{21}{20} \right)}^{2}}+......-20{{\left( \dfrac{21}{20} \right)}^{20}} .
Now we can say that the following part of the expression 1+(2120)+(2120)2+......+(2120)191+\left( \dfrac{21}{20} \right)+{{\left( \dfrac{21}{20} \right)}^{2}}+......+{{\left( \dfrac{21}{20} \right)}^{19}} is in geometric progression.
From the basic concepts of progression we know that the sum of the nn terms in a geometric progression will be given as arn1r1\dfrac{a{{r}^{n}}-1}{r-1} where aa is the first term and rr is the ratioratio .
Now we will have
1+(2120)+(2120)2+......+(2120)19=(2120)201(2120)1\Rightarrow 1+\left( \dfrac{21}{20} \right)+{{\left( \dfrac{21}{20} \right)}^{2}}+......+{{\left( \dfrac{21}{20} \right)}^{19}}=\dfrac{{{\left( \dfrac{21}{20} \right)}^{20}}-1}{\left( \dfrac{21}{20} \right)-1} .
Now by simplifying this we will get
(2120)201120=20((2120)201)\Rightarrow \dfrac{{{\left( \dfrac{21}{20} \right)}^{20}}-1}{\dfrac{1}{20}}=20\left( {{\left( \dfrac{21}{20} \right)}^{20}}-1 \right) .
Now we can say that
k(12120)=20((2120)201)20(2120)20 k20=20 \begin{aligned} & \Rightarrow k\left( 1-\dfrac{21}{20} \right)=20\left( {{\left( \dfrac{21}{20} \right)}^{20}}-1 \right)-20{{\left( \dfrac{21}{20} \right)}^{20}} \\\ & \Rightarrow \dfrac{-k}{20}=-20 \\\ \end{aligned} .
Hence we can conclude that the value of kk is 400.
Therefore we will mark the option “a” as correct.

Note: While answering questions of this type we should be very careful with each and every step we are performing. Very few mistakes are possible in questions of this type and they are generally related to calculations.