Solveeit Logo

Question

Question: If \[\left( {2 + \sin x} \right).\dfrac{{dy}}{{dx}} + \left( {y + 1} \right)\cos x = 0,\,\,and\,\,y\...

If (2+sinx).dydx+(y+1)cosx=0,andy(0)=1,\left( {2 + \sin x} \right).\dfrac{{dy}}{{dx}} + \left( {y + 1} \right)\cos x = 0,\,\,and\,\,y\left( 0 \right) = 1, then y(π2)y\left( {\dfrac{\pi }{2}} \right) is equal to
A. 13\dfrac{1}{3}
B. 13 - \dfrac{1}{3}
C. 23 - \dfrac{2}{3}
D. 43\dfrac{4}{3}

Explanation

Solution

y(0)=1y\left( 0 \right) = 1 means that at the point 0 the value of the function is one and we have to find the value of the function at π2\dfrac{\pi }{2}. The given equation is such that we have to convert it into a partial differential equation from. Remember that integration of 1xdx\dfrac{1}{x}dx is logx\log \left| x \right| and differentiation of cosxissinx\cos x\,\,is\,\,\sin x and sinx\sin xis cosx\cos x\, .
Ex: ddxsinx=cosx\dfrac{d}{{dx}}\sin x = \cos x
The log function has many different rules. One can write (logm+logn)\left( {\log m + \log n} \right) as log mn and log m - log n{\text{log mn and log m - log n}} as logmn\log \dfrac{m}{n} similar log x{\text{log x}} to the house power is power x log x{\text{x log x}}.
Ex: logx2=2logx\log {x^2} = 2\log x

Complete step by step solution:
Given: The given differential equation is

(2+sinx)dydx+(y+1)cosx=0 (2+sinx).dy+(y+1).cosxdx=0  \left( {2 + \sin x} \right)\dfrac{{dy}}{{dx}} + \left( {y + 1} \right)\cos x = 0 \\\ \Rightarrow \left( {2 + \sin x} \right).dy + \left( {y + 1} \right).\cos x\,\,dx = 0 \\\

Further performing calculation, we get

2+sinx.dy=(y+1).cosx.dx 1(y+1)dy=cosx2+sinx.dx 1y+1.dy+cosx2+sinx.dx=0  \Rightarrow 2 + \sin x.dy = - \left( {y + 1} \right).\cos x.dx \\\ \Rightarrow - \dfrac{1}{{\left( {y + 1} \right)}}dy = \dfrac{{\cos x}}{{2 + \sin x}}.dx \\\ \Rightarrow \dfrac{1}{{y + 1}}.dy + \dfrac{{\cos x}}{{2 + \sin x}}.dx = 0 \\\

Now performing integration i.e. integrating both sides, we get
1y+1dy+cosx2+sinx=dx=0........(i)\int {\dfrac{1}{{y + 1}}} dy + \int {\dfrac{{\cos x}}{{2 + \sin x}} = dx = 0 ........\left( i \right)}
Let 2+sinx=t2 + \sin x = t
\therefore Differentiating with respect to x we get

ddx(2+sinx)=dtdx cosxdx=dt....(ii)  \dfrac{d}{{dx}}\left( {2 + \sin x} \right) = \dfrac{{dt}}{{dx}} \\\ \Rightarrow \cos x\,\,dx = dt ....\left( {ii} \right) \\\

Now, putting the value of cosxdx=dt\cos xdx = dt and 2+sinx=t2 + \sin x = t in the equation (i) we get

log1+y+C1+dtt=0 log1+y+C1+logt+C2=0  \log \left| {1 + y} \right| + {C_1}\, + \int {\dfrac{{dt}}{t}} = 0 \\\ \Rightarrow \log \left| {1 + y} \right| + {C_1} + \log \left| t \right| + {C_2} = 0 \\\

Putting back the value of t.
log1+y+log2+sinx=(C1+C2)\Rightarrow \log \left| {1 + y} \right| + \log \left| {2 + \sin x} \right| = - \left( {{C_1} + {C_2}} \right)
Now, let (C1+C2)=logC - \left( {{C_1} + {C_2}} \right) = \log \,C thus, the equation becomes.
log1+y+log2+sinx=logC\log \left| {1 + y} \right| + \log \left| {2 + \sin x} \right| = log\,C
Now, according to question y(0)=1y\left( 0 \right) = 1 this means that y=1y = 1when x=0x = 0, thus putting these values we get
log(2)+log2=logC\log \left( 2 \right) + \log \left| 2 \right| = \log C

\Rightarrow C = 2 + 2 \\\ \,\,\,\,\,\,\,C = 4 \\\ $$ [$$\because \log M + \log N = \log z = \log \left( {MN} \right) = \log Z$$thus, $${\text{MN = Z}}$$] Now, the equation becomes, $$\left( {1 + y} \right)\left( {2 + \sin x} \right) = 4$$ Now, at $$x = \dfrac{\pi }{2}$$ We get $$\left( {1 + y} \right)\left( {2 + \sin \dfrac{\pi }{2}} \right) = 4$$ Therefore, $$\left( {y + 1} \right)\left( {2 + 1} \right) = 4$$ [Since $$\left( {\sin \dfrac{\pi }{2} = 1} \right)$$]

\left( {y + 1} \right) = \dfrac{4}{3} \\
y = \dfrac{4}{3} - 1 \\

Therefore, $$y = \dfrac{{4 - 3}}{3} = \dfrac{1}{3}$$ That at $$x\left( {\dfrac{\pi }{2}} \right) = \dfrac{1}{3}$$ is the required answer. **Thus option (1) is correct.** **Note:** In this type of question students often make mistakes while performing logarithmic operation, do not make such mistakes.