Solveeit Logo

Question

Question: If \[\left( {1 - y} \right)\left( {1 + 2x + 4{x^2} + 8{x^3} + 16{x^4} + 32{x^5}} \right) = \left( {1...

If (1y)(1+2x+4x2+8x3+16x4+32x5)=(1y6)\left( {1 - y} \right)\left( {1 + 2x + 4{x^2} + 8{x^3} + 16{x^4} + 32{x^5}} \right) = \left( {1 - {y^6}} \right), (y1)\left( {y \ne 1} \right), then a value of yx\dfrac{y}{x} is
A.12\dfrac{1}{2}
B.2
C.2524\dfrac{{25}}{{24}}
D.2425\dfrac{{24}}{{25}}

Explanation

Solution

Here, we will first find the sum of the geometric series 1+2x+4x2+8x3+16x4+32x51 + 2x + 4{x^2} + 8{x^3} + 16{x^4} + 32{x^5} using the formula to calculate the sum of first nn terms of a geometric progression, S=a(rn1)r1S = \dfrac{{a\left( {{r^n} - 1} \right)}}{{r - 1}}. Then we will use the obtained value of 1+2x+4x2+8x3+16x4+32x51 + 2x + 4{x^2} + 8{x^3} + 16{x^4} + 32{x^5} in the given equation and simplify it to find the required value.

Complete step-by-step answer:
We are given that the equation
(1y)(1+2x+4x2+8x3+16x4+32x5)=(1y6) ......eq.(1)\left( {1 - y} \right)\left( {1 + 2x + 4{x^2} + 8{x^3} + 16{x^4} + 32{x^5}} \right) = \left( {1 - {y^6}} \right){\text{ ......eq.(1)}}
We know that a geometric progression is a sequence of numbers in which each is multiplied by the same factor to obtain the next number in the sequence.
Since 1+2x+4x2+8x3+16x4+32x51 + 2x + 4{x^2} + 8{x^3} + 16{x^4} + 32{x^5} is the sum of a geometric progression with a common ratio 2x2x.
Hence, we have the sum is S=1+2x+4x2+8x3+16x4+32x5S = 1 + 2x + 4{x^2} + 8{x^3} + 16{x^4} + 32{x^5}.
We know that the formula to calculate the sum of first nn terms of a geometric progression is S=a(rn1)r1S = \dfrac{{a\left( {{r^n} - 1} \right)}}{{r - 1}}.
First, we will find the number of terms nn and the first term aa in the above series SS.
n=6n = 6
a=1a = 1
r=2xr = 2x
Using the above values of nn, rr and aa in the above formula of sum of geometric progression.

S=1((2x)61)2x1 S=64x612x1  \Rightarrow S = \dfrac{{1\left( {{{\left( {2x} \right)}^6} - 1} \right)}}{{2x - 1}} \\\ \Rightarrow S = \dfrac{{64{x^6} - 1}}{{2x - 1}} \\\

Thus, we have 1+2x+4x2+8x3+16x4+32x5=64x612x11 + 2x + 4{x^2} + 8{x^3} + 16{x^4} + 32{x^5} = \dfrac{{64{x^6} - 1}}{{2x - 1}}.
Dividing the equation (1){\text{(1)}} by 1y1 - y on both sides, we get

(1y)(1+2x+4x2+8x3+16x4+32x5)1y=(1y6)1y 1+2x+4x2+8x3+16x4+32x5=(1y6)1y  \Rightarrow \dfrac{{\left( {1 - y} \right)\left( {1 + 2x + 4{x^2} + 8{x^3} + 16{x^4} + 32{x^5}} \right)}}{{1 - y}} = \dfrac{{\left( {1 - {y^6}} \right)}}{{1 - y}} \\\ \Rightarrow 1 + 2x + 4{x^2} + 8{x^3} + 16{x^4} + 32{x^5} = \dfrac{{\left( {1 - {y^6}} \right)}}{{1 - y}} \\\

Using the value of 1+2x+4x2+8x3+16x4+32x51 + 2x + 4{x^2} + 8{x^3} + 16{x^4} + 32{x^5} in the above equation, we get

64x612x1=1y61y 64x612x1=y61y1  \Rightarrow \dfrac{{64{x^6} - 1}}{{2x - 1}} = \dfrac{{1 - {y^6}}}{{1 - y}} \\\ \Rightarrow \dfrac{{64{x^6} - 1}}{{2x - 1}} = \dfrac{{{y^6} - 1}}{{y - 1}} \\\

Comparing xx and yy in the above equation, we get
2x=y\Rightarrow 2x = y
Dividing the above equation by xx on both sides, we get

2xx=yx 2=yx yx=2  \Rightarrow \dfrac{{2x}}{x} = \dfrac{y}{x} \\\ \Rightarrow 2 = \dfrac{y}{x} \\\ \Rightarrow \dfrac{y}{x} = 2 \\\

Hence, option B is correct.

Note: While solving this question, be careful when we find the sum of the geometric series using the formula of first nn terms of a geometric progression, S=a(rn1)r1S = \dfrac{{a\left( {{r^n} - 1} \right)}}{{r - 1}}. This is the key point of the question, some students try to solve this equation directly and end up with a long solution, which is time consuming and mostly leads to wrong answers.