Question
Mathematics Question on Binomial theorem
If (1+x+x2)n=1+a1x+a2x2+⋯+a2nx2n, 2a1−3a2+⋯−(2n+1)a2n is equal to
A
n
B
#NAME?
C
n + 1
D
#NAME?
Answer
#NAME?
Explanation
Solution
Given,
(1+x+x2)n=1+a1x+a2x2+…+a2nx2n
⇒x(1+x+x2)n=x+a1x2+a2x3+…+a2nx2n+1
On differentiating w.r.t. x, we get
(1+x+x2)n+x⋅n(1+x+x2)n−1(1+2x)
=1+2a1x+3a2x2+…+a2n⋅(2n+1)x2n
On putting x=−1, we get
(1−1+1)n−n(1−1+1)n−1(1−2)
=1−2a1+3a2+…+a2n(2n+1)
⇒1−n(−1)=1−2a1+3a2+…+a2n(2n+1)
⇒2a1−3a2…−(2n+1)a2n=−n