Solveeit Logo

Question

Question: If \(\left( {1 - \cos A} \right)\left( {1 - \cos B} \right)\left( {1 - \cos C} \right) = \sin A\sin ...

If (1cosA)(1cosB)(1cosC)=sinAsinBsinC,\left( {1 - \cos A} \right)\left( {1 - \cos B} \right)\left( {1 - \cos C} \right) = \sin A\sin B\sin C, then find the value of (1+cosA)(1+cosB)(1+cosC)=\left( {1 + \cos A} \right)\left( {1 + \cos B} \right)\left( {1 + \cos C} \right) =
a) cosAcosBcosC\cos A\cos B\cos C
b) sinAsinBsinC\sin A\sin B\sin C
c) cosAcosBcosC - \cos A\cos B\cos C
d) sinAsinBsinC - \sin A\sin B\sin C

Explanation

Solution

Here we will use the basic trigonometric identities for equating both the sides of = sign, so that we can reach to the solution. To solve this problem, we need to remember the formulas of trigonometry & apply those attentively.

Complete step-by-step answer:
Given- (1cosA)(1cosB)(1cosC)=sinAsinBsinC\left( {1 - \cos A} \right)\left( {1 - \cos B} \right)\left( {1 - \cos C} \right) = \sin A\sin B\sin C
We have to find here 1cosθ=2sin2θ21 - \cos \theta = 2{\sin ^2}\dfrac{\theta }{2}.
We know some formulas from sub multiple angles of trigonometry & generally we apply these formulas in case half of the angles are involved in the question along with different trigonometric functions -
sinθ=2sinθ2cosθ2\sin \theta = 2\sin \dfrac{\theta }{2}\cos \dfrac{\theta }{2}
sinθ=2sinθ2cosθ2\sin \theta = 2\sin \dfrac{\theta }{2}\cos \dfrac{\theta }{2}
1+cosθ=2cos2θ21 + \cos \theta = 2{\cos ^2}\dfrac{\theta }{2}
From the given condition, we have
(1cosA)(1cosB)(1cosC)=sinAsinBsinC\left( {1 - \cos A} \right)\left( {1 - \cos B} \right)\left( {1 - \cos C} \right) = \sin A\sin B\sin C
2sin2A2.2sin2B2.2sin2C2=sinAsinBsinC2{\sin ^2}\dfrac{A}{2}.2{\sin ^2}\dfrac{B}{2}.2{\sin ^2}\dfrac{C}{2} = \sin A\sin B\sin C
[ applying formula 1cosθ=2sin2θ21 - \cos \theta = 2{\sin ^2}\dfrac{\theta }{2}]
8sin2A2sin2B2sin2C2=2sinA2cosA2.2sinB2cosB2.2sinC2cosC2\Rightarrow 8{\sin ^2}\dfrac{A}{2}{\sin ^2}\dfrac{B}{2}{\sin ^2}\dfrac{C}{2} = 2\sin \dfrac{A}{2}\cos \dfrac{A}{2}.2\sin \dfrac{B}{2}\cos \dfrac{B}{2}.2\sin \dfrac{C}{2}\cos \dfrac{C}{2} 8sin2A2sin2B2sin2C2=2sinA2cosA2.2sinB2cosB2.2sinC2cosC2 \Rightarrow 8{\sin ^2}\dfrac{A}{2}{\sin ^2}\dfrac{B}{2}{\sin ^2}\dfrac{C}{2} = 2\sin \dfrac{A}{2}\cos \dfrac{A}{2}.2\sin \dfrac{B}{2}\cos \dfrac{B}{2}.2\sin \dfrac{C}{2}\cos \dfrac{C}{2}
[ multiplying all the numerical multiples in one side & sinθ=2sinθ2cosθ2\sin \theta = 2\sin \dfrac{\theta }{2}\cos \dfrac{\theta }{2} on the other ]

8sin2A2sin2B2sin2C2=8sinA2cosA2.sinB2cosB2.sinC2cosC2 \Rightarrow 8{\sin ^2}\dfrac{A}{2}{\sin ^2}\dfrac{B}{2}{\sin ^2}\dfrac{C}{2} = 8\sin \dfrac{A}{2}\cos \dfrac{A}{2}.\sin \dfrac{B}{2}\cos \dfrac{B}{2}.\sin \dfrac{C}{2}\cos \dfrac{C}{2}
[ dividing 8sinA2sinB2sinC28\sin \dfrac{A}{2}\sin \dfrac{B}{2}\sin \dfrac{C}{2}from both sides.]
sinA2sinB2sinC2=cosA2cosB2cosC2\Rightarrow \sin \dfrac{A}{2}\sin \dfrac{B}{2}\sin \dfrac{C}{2} = \cos \dfrac{A}{2}\cos \dfrac{B}{2}\cos \dfrac{C}{2}
Squaring both sides, we have
sin2A2sin2B2sin2C2=cos2A2cos2B2cos2C2{\sin ^2}\dfrac{A}{2}{\sin ^2}\dfrac{B}{2}{\sin ^2}\dfrac{C}{2} = {\cos ^2}\dfrac{A}{2}{\cos ^2}\dfrac{B}{2}{\cos ^2}\dfrac{C}{2}…………. (1)
Now,
(1+cosA)(1+cosB)(1+cosC)\left( {1 + \cos A} \right)\left( {1 + \cos B} \right)\left( {1 + \cos C} \right)
=2cos2A2.2cos2B2.2cos2C2= 2{\cos ^2}\dfrac{A}{2}.2{\cos ^2}\dfrac{B}{2}.2{\cos ^2}\dfrac{C}{2}[ Getting all the numerical multiples multiplied]
=8cos2A2cos2B2cos2C2= 8{\cos ^2}\dfrac{A}{2}{\cos ^2}\dfrac{B}{2}{\cos ^2}\dfrac{C}{2}
=8sin2A2sin2B2sin2C2= 8{\sin ^2}\dfrac{A}{2}{\sin ^2}\dfrac{B}{2}{\sin ^2}\dfrac{C}{2} [Putting the value of cos2A2cos2B2cos2C2{\cos ^2}\dfrac{A}{2}{\cos ^2}\dfrac{B}{2}{\cos ^2}\dfrac{C}{2} from eq. (1)]
=2sin2A2.2sin2B2.2sin2C2= 2{\sin ^2}\dfrac{A}{2}.2{\sin ^2}\dfrac{B}{2}.2{\sin ^2}\dfrac{C}{2}
[ To get in such form so that having formula 1cosθ=2sin2θ21 - \cos \theta = 2{\sin ^2}\dfrac{\theta }{2}can be applied ]
=(1cosA)(1cosB)(1cosC)= \left( {1 - \cos A} \right)\left( {1 - \cos B} \right)\left( {1 - \cos C} \right)
=sinAsinBsinC= \sin A\sin B\sin C
Hence, the correct option is B.

Note: To solve this we should have concepts & formulas very clear in our mind. In this type of problem, one should take the hint from the given condition in the question and apply it to obtain the solution. Thus, all the trigonometric identities should be remembered. There is a high chance of getting confused while using formulas in different places.
Formulas should be remembered are:
1cosθ=2sin2θ21 - \cos \theta = 2{\sin ^2}\dfrac{\theta }{2}
sinθ=2sinθ2cosθ2\sin \theta = 2\sin \dfrac{\theta }{2}\cos \dfrac{\theta }{2}
1+cosθ=2cos2θ21 + \cos \theta = 2{\cos ^2}\dfrac{\theta }{2}