Solveeit Logo

Question

Question: If \(\lambda_{\text{max}}\) is 6563 Å, then wave length of second line for Balmer series will be....

If λmax\lambda_{\text{max}} is 6563 Å, then wave length of second line for Balmer series will be.

A

λ=163R\lambda = \frac{16}{3R}

B

λ=365R\lambda = \frac{36}{5R}

C

λ=43R\lambda = \frac{4}{3R}

D

None of the above

Answer

λ=163R\lambda = \frac{16}{3R}

Explanation

Solution

For Balmer series 1λ=R(1221n2)\frac{1}{\lambda} = R\left( \frac{1}{2^{2}} - \frac{1}{n^{2}} \right) where n = 3, 4, 5

For second line n = 4

So 1λ=R(122142)=316Rλ=163R\frac{1}{\lambda} = R\left( \frac{1}{2^{2}} - \frac{1}{4^{2}} \right) = \frac{3}{16}R \Rightarrow \lambda = \frac{16}{3R}.