Solveeit Logo

Question

Mathematics Question on Three Dimensional Geometry

If λ1<λ2\lambda_1<\lambda_2 are two values of λ\lambda such that the angle between the planes P1:r(3i^5j^+k^)=7P_1: \vec{r}(3 \hat{i}-5 \hat{j}+\hat{k})=7 and P2:r(λi^+j^3k^)=9P_2: \vec{r} \cdot(\lambda \hat{i}+\hat{j}-3 \hat{k})=9 is sin1(265)\sin ^{-1}\left(\frac{2 \sqrt{6}}{5}\right), then the square of the length of perpendicular from the point (38λ1,10λ2,2)\left(38 \lambda_1, 10 \lambda_2, 2\right) to the plane P1P_1 is _____

Answer

The correct answer is 315.

P1=r.(3i^5j^+k^)=7P_{1}=\vec{r}.(3\hat{i}-5\hat{j}+\hat{k})=7

P2=r.(λi^+j^3k^)=9P_{2}=\vec{r}.(\lambda \hat{i}+\hat{j}-3\hat{k})=9

θ=sin1(265)\theta =sin^{-1}(\frac{2\sqrt{6}}{5})

sinθ=265\Rightarrow sin\theta =\frac{2\sqrt{6}}{5}

cosθ=15.\therefore cos\theta =\frac{1}{5}.

cosθ=r.rrr2cos\theta =\frac{\vec{r}.\vec{r}}{|\vec{r}||\vec{r_{2}}|}

=(3i5j+k)(λi+j3k)35.λ2+10=\frac{(3i-5j+k)(\lambda {i}+{j}-3{k})}{\sqrt{35}.\sqrt{\lambda ^{2}+10}}

19λ295λ25λ+125\Rightarrow 19\lambda ^{2}-95\lambda -25\lambda +125=0

x=5,2519\Rightarrow x=5,\frac{25}{19}

square of the length of perpendicular from the point  38 1 , 10  , 2 38λ  1 ​  ,10λ  2 ​  ,2 to the plan

Perpendicular distance of point

(38λ1,10λ2,2)=(50,50,2)(38\lambda _{1},10\lambda _{2},2)=(50,50,2) from plane P1

=30×505×50+2735=\frac{|30\times50-5\times50+2-7}{\sqrt{35}}

Square=105×10535=315Square=\frac{105\times 105}{35}=315