Question
Mathematics Question on Determinants
If λ1,λ2 and λ3 are the eigen values (i.e. characteristic values) of the matrix 1 3 524615117 then (1−λ1)(1+λ2)(1+λ3) equals
A
0
B
-108
C
-95
D
95
Answer
-95
Explanation
Solution
Let A=1 3 524615117 then ∣A−λI∣=0 is characteristic equation.
i.e., 1−λ 3 524−λ615117−λ=0
Expanding along R1, we get
⇒(1−λ)[(4−λ)(7−λ)−66]+2[55−3(7−λ)]+15[18−5(4−λ)]=0
⇒(1−λ)(28−11λ+λ2−66)+2(34+3λ)+15(−2+5λ)=0
⇒(1−λ)(λ2−11λ−38)+68+6λ−30+75λ=0
⇒λ2−11λ−38−λ2+38λ+38+81λ=0
⇒−λ3+12λ2+108λ=0
⇒−λ(λ2−12λ−108)=0
⇒λ=0orλ2−12λ−108=0
⇒λ=0or(λ−18)(λ+6)=0
⇒λ=0,18,−6
Let λ1=−6,λ2=0,λ3=18
∴(1+λ1)(1+λ2)(1+λ3)=(−5)(1)(19)=−95