Solveeit Logo

Question

Mathematics Question on Determinants

If λ1,λ2\lambda_1 , \lambda_2 and λ3\lambda_3 are the eigen values (i.e. characteristic values) of the matrix 1215 3411 567\begin{vmatrix}1&2&15\\\ 3&4&11\\\ 5&6&7\end{vmatrix} then (1λ1)(1+λ2)(1+λ3) \left(1 -\lambda_{1}\right)\left(1+\lambda _{2}\right)\left(1+\lambda _{3}\right) equals

A

0

B

-108

C

-95

D

95

Answer

-95

Explanation

Solution

Let A=1215 3411 567A = \begin{vmatrix}1&2&15\\\ 3&4&11\\\ 5&6&7\end{vmatrix} then AλI=0|A - \lambda I| = 0 is characteristic equation.
i.e.,  1λ215 34λ11 567λ=0i.e., \ \ \begin{vmatrix}1 -\lambda &2&15\\\ 3&4-\lambda &11\\\ 5&6&7-\lambda \end{vmatrix} =0
Expanding along R1R_1, we get
(1λ)[(4λ)(7λ)66]+2[553(7λ)]+15[185(4λ)]=0\Rightarrow\left(1 -\lambda \right)\left[\left(4-\lambda \right)\left(7-\lambda \right) -66\right]+2 \left[55-3\left(7-\lambda \right)\right]+15 \left[18-5\left(4-\lambda \right)\right]=0
(1λ)(2811λ+λ266)+2(34+3λ)+15(2+5λ)=0\Rightarrow\left(1-\lambda \right)\left(28-11\lambda +\lambda ^{2} -66\right)+2\left(34+3\lambda \right)+15\left(-2+5\lambda \right)=0
(1λ)(λ211λ38)+68+6λ30+75λ=0\Rightarrow \left(1-\lambda \right)\left(\lambda^{2} - 11\lambda -38\right)+68+6\lambda -30+75\lambda = 0
λ211λ38λ2+38λ+38+81λ=0\Rightarrow \lambda ^{2} -11\lambda -38 -\lambda^{2} +38\lambda + 38 + 81\lambda = 0
λ3+12λ2+108λ=0\Rightarrow - \lambda^{3} + 12\lambda^{2} +108\lambda = 0
λ(λ212λ108)=0\Rightarrow - \lambda \left(\lambda^{2} -12\lambda -108 \right) = 0
λ=0orλ212λ108=0\Rightarrow \lambda = 0 or \lambda^{2} - 12\lambda - 108 = 0
λ=0or(λ18)(λ+6)=0\Rightarrow \lambda = 0 or \left(\lambda -18\right)\left(\lambda +6\right)= 0
λ=0,18,6\Rightarrow \lambda = 0 , 18 , - 6
Let λ1=6,λ2=0,λ3=18 \lambda_{1} =-6, \lambda_{2} =0 , \lambda_{3} =18
(1+λ1)(1+λ2)(1+λ3)=(5)(1)(19)=95\therefore \left(1+\lambda_{1} \right)\left(1+\lambda_{2} \right)\left(1+\lambda_{3} \right) =\left(-5\right)\left(1\right)\left(19\right) =-95