Question
Mathematics Question on Three Dimensional Geometry
If l1,m1,n1 and l2,m2,n2 are the direction cosines of two mutually perpendicular lines, show that the direction cosines of the line perpendicular to both of these are m1n2-m2n1,n1l2-n2l1,l1m2-l2m1.
It is given that l1,m1,n1 and l2,m2,n2 are the direction cosines of two mutually perpendicular lines.
Therefore,
l1l2+m1m2+n1n2=0...(1)
l21+m21+n21=1...(2)
l22+m22+n22=1...(3)
Let l,m,n be the direction cosines of the line which is perpendicular to the line with direction cosines l1,m1,n1 and l2,m2,n2
∴ll1+mm1+nn1=0 ll2+mm2+nn2=0
∴m1n2−m2n1l=n1l2−n2l1m=l1m2−l2m1n
⇒(m1n2−m2n1)2l2=(n1l2−n2l1)2m2=(l1m2−l2m1)2n2
⇒(m1n2−m2n1)2l2=(n1l2−n2l1)2m2=(l1m2−l2m1)2n2
=⇒(m1n2−m2n1)2+(n1l2−n2l1)2+(l1m2−l2m1)2l2+m2+n2. ...(4)
l,m,n are the direction cosines of the line.
∴l2+m2+n2=1...(5)
It is known that,
(l21+m21+n21)(l22+m22+n22)-(l1l2+m1m2+n1n2)2=(m1n2-m2n1)2+(n1l2-n2l1)2+(l1m2-l2m1)2
From(1),(2),and(3),we obtain
⇒ 1.1-0=(m1n2+m2n1)2+(n1l2+n2l1)+(l1m2+l2m1)
∴ (m1n2-m2n1)2+(n1l2-n2l1)2+(l1m2-l2m1)2=1....(6)
Substituting the values from equations(5)and(6) in equation(4), we obtain
⇒(m1n2−m2n1)2l2=(n1l2−n2l1)2m2=(l1m2−l2m1)2n2=1
⇒ l=m1n2-m2n1, m=n1l2-n2l1, n=l1m2-l2m1
Thus, the direction cosines of the required line are m1n2-m2n1, m=n1l2-n2l1, n=l1m2-l2m1.