Solveeit Logo

Question

Mathematics Question on Trigonometric Functions

If L=sin2(π16)sin2(π8)L=\sin ^{2}\left(\frac{\pi}{16}\right)-\sin ^{2}\left(\frac{\pi}{8}\right) and M=cos2(π16)sin2(π8),M=\cos ^{2}\left(\frac{\pi}{16}\right)-\sin ^{2}\left(\frac{\pi}{8}\right), then :

A

M=122+12cosπ8M =\frac{1}{2 \sqrt{2}}+\frac{1}{2} \cos \frac{\pi}{8}

B

L=14214cosπ8L=\frac{1}{4 \sqrt{2}}-\frac{1}{4} \cos \frac{\pi}{8}

C

M=142+14cosπ8M =\frac{1}{4 \sqrt{2}}+\frac{1}{4} \cos \frac{\pi}{8}

D

L=122+12cosπ8L=-\frac{1}{2 \sqrt{2}}+\frac{1}{2} \cos \frac{\pi}{8}

Answer

M=122+12cosπ8M =\frac{1}{2 \sqrt{2}}+\frac{1}{2} \cos \frac{\pi}{8}

Explanation

Solution

L=sin2(π16)sin2(π8)L=\sin ^{2}\left(\frac{\pi}{16}\right)-\sin ^{2}\left(\frac{\pi}{8}\right)
(sin2θ=1cos2θ2)\left(\because \sin ^{2} \theta=\frac{1-\cos 2 \theta}{2}\right)
L=(1cos(π/8)2)(1cos(π/4)2)\Rightarrow L=\left(\frac{1-\cos (\pi / 8)}{2}\right)-\left(\frac{1-\cos (\pi / 4)}{2}\right)
L=12[cos(π4)cos(π8)]L=\frac{1}{2}\left[\cos \left(\frac{\pi}{4}\right)-\cos \left(\frac{\pi}{8}\right)\right]
L=12212cos(π8)L=\frac{1}{2 \sqrt{2}}-\frac{1}{2} \cos \left(\frac{\pi}{8}\right)
M=cos2(π16)sin2(π8)M=\cos ^{2}\left(\frac{\pi}{16}\right)-\sin ^{2}\left(\frac{\pi}{8}\right)
M=1+cos(π/8)21cos(π/4)2M=\frac{1+\cos (\pi / 8)}{2}-\frac{1-\cos (\pi / 4)}{2}
M=12cos(π8)+122M=\frac{1}{2} \cos \left(\frac{\pi}{8}\right)+\frac{1}{2 \sqrt{2}}