Solveeit Logo

Question

Question: If l ( my + nz – lx ) = m ( nz + lx – my ) = n ( lx + my – nz ) , prove that \(\dfrac{y+z-x}{l}=\) \...

If l ( my + nz – lx ) = m ( nz + lx – my ) = n ( lx + my – nz ) , prove that y+zxl=\dfrac{y+z-x}{l}= z+xyl=\dfrac{z+x-y}{l}= x+yzl\dfrac{x+y-z}{l}.

Explanation

Solution

In question, we have to prove that y+zxl=\dfrac{y+z-x}{l}= z+xyl=\dfrac{z+x-y}{l}= x+yzl\dfrac{x+y-z}{l} and only know information in question is that l ( my + nz – lx ) = m ( nz + lx – my ) = n ( lx + my – nz ) . we will form given equation into required equation by substitution of other fraction and by dividing whole equation by lmn.

Complete step-by-step solution:
In vector, l, m, and n represent direction cosines of a vector along the x-axis, y-axis, and z-axis respectively, and the relation between direction cosines l, m, and n are represented as l2+m2+n2=1{{l}^{2}}+{{m}^{2}}+{{n}^{2}}=1.
Now, in question it is given that l , m and n are direction cosines of a vector along x – axis , y – axis and z – axis respectively and let x , and z be any point on vector plane , then there is relation l ( my + nz – lx ) = m ( nz + lx – my ) = n ( lx + my – nz ), then we have to prove that y+zxl=\dfrac{y+z-x}{l}= z+xyl=\dfrac{z+x-y}{l}= x+yzl\dfrac{x+y-z}{l}.
Now, we have
l ( my + nz – lx ) = m ( nz + lx – my ) = n ( lx + my – nz ) …………...…..( i )
Now, dividing equation ………..…...( i ) by lmn , we get
l ( my + nz  lx ) lmn= m ( nz + lx  my ) lmn= n ( lx + my  nz )lmn\dfrac{l\text{ }\left( \text{ }my\text{ }+\text{ }nz\text{ } -\text{ }lx\text{ } \right)\text{ }}{lmn}=\text{ }\dfrac{m\text{ }\left( \text{ }nz\text{ }+\text{ }lx\text{ } -\text{ }my\text{ } \right)\text{ }}{lmn}=\text{ }\dfrac{n\text{ }\left( \text{ }lx\text{ }+\text{ }my -\text{ }\text{ }nz\text{ } \right)}{lmn}
On solving, we get
 ( my + nz  lx ) mn=  ( nz + lx  my ) ln=  ( lx + my  nz )lm\dfrac{\text{ }\left( \text{ }my\text{ }+\text{ }nz\text{ } - \text{ }lx\text{ } \right)\text{ }}{mn}=\text{ }\dfrac{\text{ }\left( \text{ }nz\text{ }+\text{ }lx\text{ } - \text{ }my\text{ }\right)\text{ }}{ln}=\text{ }\dfrac{\text{ }\left( \text{ }lx\text{ }+\text{ }my\text{ }- \text{ }nz\text{ } \right)}{lm}
As, all three fractions are same, which means all three fraction are of same ratio on simplification that is if we have ab=cd=ef\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{e}{f} then a+cb+d=c+ed+f=e+af+b\dfrac{a+c}{b+d}=\dfrac{c+e}{d+f}=\dfrac{e+a}{f+b}, so we can write equation ( ii ) as ,
 ( my + nz  lx )+( nz + lx  my ) mn+nl=  ( nz + lx  my )+( lx + my  nz ) ln+lm=  ( lx + my  nz )+( my + nz  lx )lm+mn\dfrac{\text{ }\left( \text{ }my\text{ }+\text{ }nz\text{ }-\text{ }lx\text{ } \right)\text{+}\left( \text{ }nz\text{ }+\text{ }lx\text{ }-\text{ }my\text{ } \right)\text{ }}{mn+nl}=\text{ }\dfrac{\text{ }\left( \text{ }nz\text{ }+\text{ }lx\text{ }- \text{ }my\text{ } \right)\text{+}\left( \text{ }lx\text{ }+\text{ }my\text{ }- \text{ }nz\text{ } \right)\text{ }}{ln+lm}=\text{ }\dfrac{\text{ }\left( \text{ }lx\text{ }+\text{ }my\text{ } -\text{ }nz\text{ } \right)+\left( \text{ }my\text{ }+\text{ }nz\text{ } -\text{ }lx\text{ } \right)}{lm+mn}
Taking common factors out, we get
 ( my + nz  lx )+( nz + lx  my ) n(m+l)=  ( nz + lx  my )+( lx + my  nz ) l(n+m)=  ( lx + my  nz )+( my + nz  lx )m(l+n)\dfrac{\text{ }\left( \text{ }my\text{ }+\text{ }nz\text{ } -\text{ }lx\text{ } \right)\text{+}\left( \text{ }nz\text{ }+\text{ }lx\text{ } - \text{ }my\text{ } \right)\text{ }}{n(m+l)}=\text{ }\dfrac{\text{ }\left( \text{ }nz\text{ }+\text{ }lx\text{ } -\text{ }my\text{ } \right)\text{+}\left( \text{ }lx\text{ }+\text{ }my\text{ } \text{ }nz\text{ } \right)\text{ }}{l(n+m)}=\text{ }\dfrac{\text{ }\left( \text{ }lx\text{ }+\text{ }my\text{ } -\text{ }nz\text{ } \right)+\left( \text{ }my\text{ }+\text{ }nz\text{ } -\text{ }lx\text{ } \right)}{m(l+n)}
Solving brackets in numerator, we get
 ( 2nz) n(m+l)=  ( 2lx) l(n+m)=  (2my)m(l+n)\dfrac{\text{ }\left( \text{ 2}nz \right)\text{ }}{n(m+l)}=\text{ }\dfrac{\text{ }\left( \text{ 2}lx \right)\text{ }}{l(n+m)}=\text{ }\dfrac{\text{ }\left( \text{2}my \right)}{m(l+n)}
On simplifying fractions, we get
 ( 2z) (m+l)=  ( 2x) (n+m)=  (2y)(l+n)\dfrac{\text{ }\left( \text{ 2}z \right)\text{ }}{(m+l)}=\text{ }\dfrac{\text{ }\left( \text{ 2}x \right)\text{ }}{(n+m)}=\text{ }\dfrac{\text{ }\left( \text{2}y \right)}{(l+n)}
Adding and subtracting the fractions we get,
 ( 2z)+(2y)( 2x) (m+l)+(l+n)(n+m)=  (2z)+( 2x)(2y) (m+l)+(n+m)(l+n)= (2x)+(2y)(2z)(l+n)+(n+m)(l+m)\dfrac{\text{ }\left( \text{ 2}z \right)\text{+}\left( \text{2}y \right)-\left( \text{ 2}x \right)\text{ }}{(m+l)+(l+n)-\left( n+m \right)}=\text{ }\dfrac{\text{ }\left( 2z \right)+\left( \text{ 2}x \right)-\left( 2y \right)\text{ }}{(m+l)+(n+m)-(l+n)}=\text{ }\dfrac{\left( 2x \right)+\left( \text{2}y \right)-\left( 2z \right)}{(l+n)+(n+m)-(l+m)}
On solving numerator and denominator of all three fractions, we get
2(z+yx)2l=  2(z+xy) 2m= 2(x+yz)2n\dfrac{2(z+y-x)}{2l}=\text{ }\dfrac{\text{ 2}\left( z+x-y \right)\text{ }}{2m}=\text{ }\dfrac{2\left( x+y-z \right)}{2n}
On simplifying fractions, we get
(z+yx)l=  (z+xy) m= (x+yz)n\dfrac{(z+y-x)}{l}=\text{ }\dfrac{\text{ }\left( z+x-y \right)\text{ }}{m}=\text{ }\dfrac{\left( x+y-z \right)}{n}
Hence, if l ( my + nz – lx ) = m ( nz + lx – my ) = n ( lx + my – nz ) , prove that y+zxl=\dfrac{y+z-x}{l}= z+xyl=\dfrac{z+x-y}{l}= x+yzl\dfrac{x+y-z}{l}.

Note: In these types of questions we need to modify fractions in such a way that the resulting fraction in the simplest form and required form. Sometimes, the relation between l, m, and n that is l2+m2+n2=1{{l}^{2}}+{{m}^{2}}+{{n}^{2}}=1is required so all concept must be remembered.