Solveeit Logo

Question

Quantitative Ability and Data Interpretation Question on Basics of Numbers

If l, m, and n are real numbers such that l+m=10lm,m+n=12mnl + m = 10lm, m + n = 12mn, and n+l=4nln + l = 4nl, then find the value of 180lmnlm+mn+nl\frac{180lmn}{lm+mn+nl}.

A

18

B

20

C

24

D

32

E

36

Answer

20

Explanation

Solution

l+m=10lmllm+mlm=101m+1l=10l + m = 10lm ⇒ \frac{l}{lm} + \frac{m}{lm }= 10 ⇒ \frac{1}{m} + \frac{1}{l }= 10 … (1)

Similarly, m+n=12mn1n+1m=12m + n = 12mn ⇒ \frac{1}{n} + \frac{1}{m} = 12 … (2)

And, n+l=4nl1l+1n=4n + l = - 4nl ⇒ \frac{1}{l} + \frac{1}{n} = -4 … (3)

Adding equations (1),(2)(1), (2), and (3)(3), we get the following:

2(1l+1m+1n)=182\bigg(\frac{1}{l} + \frac{1}{m} + \frac{1}{n}\bigg) = 18

(1l+1m+1n)=9⇒ \bigg(\frac{1}{l} + \frac{1}{m} + \frac{1}{n}\bigg) = 9

So, = 180lmnlm+mn+nl=1801n+1l+1m=1809=20\frac{180 lmn}{lm+mn+nl }= \frac{180 }{ \frac{1}{n}+\frac{1}{l}+\frac{1}{m}} = \frac{180}{9} = 20

Hence, option B is the correct answer.