Solveeit Logo

Question

Mathematics Question on Determinants

If l,ml,m and nn are real numbers such that l2+m2{{l}^{2}}+{{m}^{2}} +n2=0,+{{n}^{2}}=0, then 1+l2lmln lm1+m2mn lnmn1+n2 \left| \begin{matrix} 1+{{l}^{2}} & lm & ln \\\ lm & 1+{{m}^{2}} & mn \\\ ln & mn & 1+{{n}^{2}} \\\ \end{matrix} \right| is equal to

A

0

B

1

C

l+m+n+2l+m+n+2

D

2(Z+m+n)+32(Z+m+n)+3

Answer

1

Explanation

Solution

1+l2lmln lm1+m2mn lnmn1+n2 \left| \begin{matrix} 1+{{l}^{2}} & lm & \ln \\\ lm & 1+{{m}^{2}} & mn \\\ \ln & mn & 1+{{n}^{2}} \\\ \end{matrix} \right|
=(1+l2)1+m2mn mn1+n2 lmlmmn ln1+n2 =(1+{{l}^{2}})\left| \begin{matrix} 1+{{m}^{2}} & mn \\\ mn & 1+{{n}^{2}} \\\ \end{matrix} \right|-lm\left| \begin{matrix} lm & mn \\\ \ln & 1+{{n}^{2}} \\\ \end{matrix} \right|
=lnlm1+m2 lnmn =ln\left| \begin{matrix} lm & 1+{{m}^{2}} \\\ ln & mn \\\ \end{matrix} \right|
=(1+l2)(1+m2+n2+m2n2m2n2)=(1+{{l}^{2}})(1+{{m}^{2}}+{{n}^{2}}+{{m}^{2}}{{n}^{2}}-{{m}^{2}}{{n}^{2}}) lm(lmlmn2lmn2)-lm(lm-lm{{n}^{2}}-lm{{n}^{2}}) +ln(lm2nlnlm2n)+\ln (l{{m}^{2}}n-\ln -l{{m}^{2}}n)
=(1+l2)(1+m2+n2)l2m2l2n2=(1+{{l}^{2}})(1+{{m}^{2}}+{{n}^{2}})-{{l}^{2}}{{m}^{2}}-{{l}^{2}}{{n}^{2}}
=1+m2+n2+l2+l2m2+l2n2l2m2l2n2=1+{{m}^{2}}+{{n}^{2}}+{{l}^{2}}+{{l}^{2}}{{m}^{2}}+{{l}^{2}}{{n}^{2}}-{{l}^{2}}{{m}^{2}}-{{l}^{2}}{{n}^{2}}
=1+m2+n2+l2=1=1+{{m}^{2}}+{{n}^{2}}+{{l}^{2}}=1 (l2+m2+n2=0)(\because {{l}^{2}}+{{m}^{2}}+{{n}^{2}}=0)