Question
Mathematics Question on Determinants
If l,m and n are real numbers such that l2+m2 +n2=0, then 1+l2 lm ln lm1+m2mnlnmn1+n2 is equal to
A
0
B
1
C
l+m+n+2
D
2(Z+m+n)+3
Answer
1
Explanation
Solution
1+l2 lm ln lm1+m2mnlnmn1+n2
=(1+l2)1+m2 mn mn1+n2−lmlm ln mn1+n2
=lnlm ln 1+m2mn
=(1+l2)(1+m2+n2+m2n2−m2n2) −lm(lm−lmn2−lmn2) +ln(lm2n−ln−lm2n)
=(1+l2)(1+m2+n2)−l2m2−l2n2
=1+m2+n2+l2+l2m2+l2n2−l2m2−l2n2
=1+m2+n2+l2=1 (∵l2+m2+n2=0)