Solveeit Logo

Question

Question: If l is the length of any edge of a regular tetrahedron, then the distance of any vertex from the op...

If l is the length of any edge of a regular tetrahedron, then the distance of any vertex from the opposite face is-

A

23\frac { 2 } { 3 } l2

B

23\sqrt { \frac { 2 } { 3 } }l

C

23\frac { \sqrt { 2 } } { 3 }l

D

None of these

Answer

23\sqrt { \frac { 2 } { 3 } }l

Explanation

Solution

Let OABC be a regular tetrahedron such that

OA\overrightarrow { \mathrm { OA } }= , OB\overrightarrow { \mathrm { OB } }= , OC\overrightarrow { \mathrm { OC } }= and ||= || = || = l.

Now |.| = | . | = |. | = l2 cos 60° = λ22\frac { \lambda ^ { 2 } } { 2 }

and |.| = |.| = |.| = l2

[] = = λ22\frac { \lambda ^ { 2 } } { 2 }

Also |×+ × + × | = 2 Area of DABC

i.e. 32\frac { \sqrt { 3 } } { 2 } l2

Also equation of plane ABC is

r\overrightarrow { \mathrm { r } } . [×+ b\overrightarrow { \mathrm { b } } × c\overrightarrow { \mathrm { c } } + c\overrightarrow { \mathrm { c } } ×] = [ c\overrightarrow { \mathrm { c } } ]

\ distance of O from plane

= [abc][a×b+b×c+c×a]\frac { [ \vec { a } \vec { b } \vec { c } ] } { [ \vec { a } \times \vec { b } + \vec { b } \times \vec { c } + \vec { c } \times \vec { a } ] } = λ3/23λ22\frac { \lambda ^ { 3 } / \sqrt { 2 } } { \frac { \sqrt { 3 } \lambda ^ { 2 } } { 2 } } = l 23\sqrt { \frac { 2 } { 3 } }