Solveeit Logo

Question

Question: If λ is an eigenvalue of A, then corresponding eigenvalue of \({{P}^{-n}}A{{P}^{n}}\) (P is a square...

If λ is an eigenvalue of A, then corresponding eigenvalue of PnAPn{{P}^{-n}}A{{P}^{n}} (P is a square matrix with same order as A) is
(a) λn{{\lambda }^{n}}
(b) 1
(c) λn{{\lambda }^{-n}}
(d) λ\lambda

Explanation

Solution

Hint:For solving this problem, first let the matrix P1AP{{P}^{-1}}AP be a matrix B. For obtaining the eigenvalues, we apply the formula: BλB-\lambda . By rearranging the terms and taking the determinant of both sides we obtain the eigenvalue to be the same as that of matrix A.

Complete step-by-step answer:
According to the problem statement, we are given a matrix A. The eigenvalue corresponding to the matrix A is λ\lambda . We are required to find the even value of the matrix PnAPn{{P}^{-n}}A{{P}^{n}}. To evaluate this, first we tried to find the eigenvalue of the matrix P1AP1{{P}^{-1}}A{{P}^{1}}. Let the matrix P1AP1{{P}^{-1}}A{{P}^{1}} be another matrix B of same order.
Now, subtracting the matrix B with the product of the identity matrix with eigenvalue of matrix A. This can be expressed as:
BλI=P1APλIB-\lambda I={{P}^{-1}}AP-\lambda I
Since, the identity matrix can be rewritten as a product of inverse and actual matrix. So, on further rearrangement, we get
BλI=P1APP1λIP BλI=P1(AλI)P \begin{aligned} & B-\lambda I={{P}^{-1}}AP-{{P}^{-1}}\lambda IP \\\ & B-\lambda I={{P}^{-1}}\left( A-\lambda I \right)P \\\ \end{aligned}
Now, taking the magnitude of both sides to obtain the characteristic polynomial:
BλI=P1AλIP\left| B-\lambda I \right|=\left| {{P}^{-1}} \right|\left| A-\lambda I \right|\left| P \right|
Since, the determinant of a value can be shifted, so we get
BλI=P1PAλI BλI=P1PAλI=AλII BλI=AλI \begin{aligned} & \left| B-\lambda I \right|=\left| {{P}^{-1}} \right|\left| P \right|\left| A-\lambda I \right| \\\ & \left| B-\lambda I \right|=\left| {{P}^{-1}}P \right|\left| A-\lambda I \right|=\left| A-\lambda I \right|\left| I \right| \\\ & \left| B-\lambda I \right|=\left| A-\lambda I \right| \\\ \end{aligned}
Thus, the two matrices A and B have the same characteristic determinants and hence the same characteristic equations and the same characteristic roots. Now, the required thing is
Bn=PnAPn{{B}^{n}}={{P}^{-n}}A{{P}^{n}}
Similarly, using the above simplification, we get
BnλI=PnAλIPn BnλI=PnPnAλI BnλI=PnPnAλI=AλII BnλI=AλI \begin{aligned} & \left| {{B}^{n}}-\lambda I \right|=\left| {{P}^{-n}} \right|\left| A-\lambda I \right|\left| {{P}^{n}} \right| \\\ & \left| {{B}^{n}}-\lambda I \right|=\left| {{P}^{-n}} \right|\left| {{P}^{n}} \right|\left| A-\lambda I \right| \\\ & \left| {{B}^{n}}-\lambda I \right|=\left| {{P}^{-n}}{{P}^{n}} \right|\left| A-\lambda I \right|=\left| A-\lambda I \right|\left| I \right| \\\ & \left| {{B}^{n}}-\lambda I \right|=\left| A-\lambda I \right| \\\ \end{aligned}
Hence, the eigenvalue is λ\lambda .
Therefore, option (d) is correct.

Note: Another way of solving this problem can be:
AX=λXAX=\lambda X
Multiply both the sides with the inverse of P, we get P1AX=λP1X{{P}^{-1}}AX=\lambda {{P}^{-1}}X. Now, operating this equation by pre-multiplying P1P{{P}^{-1}}P and some other rearrangements, we obtain
(P1AP)(P1X)=λ(P1X)\Rightarrow \left( {{P}^{-1}}AP \right)\left( {{P}^{-1}}X \right)=\lambda \left( {{P}^{-1}}X \right). So, on comparing both sides, we get the value of P1AP{{P}^{-1}}AP is λ\lambda .