Question
Question: If \(l = 3\), then type and number of orbital is: A) 3p, 3 B) 4f, 14 C) 5f, 7 D) 3d, 5...
If l=3, then type and number of orbital is:
A) 3p, 3
B) 4f, 14
C) 5f, 7
D) 3d, 5
Solution
To answer this question, you should have the knowledge of quantum numbers and orbitals. l is known as the azimuthal quantum number. Values of l range from 0 to n−1 and for each value of l, there is a corresponding subshell assigned.
Complete step by step solution:
Atomic orbitals are precisely distinguished by quantum numbers. Each orbital is designated by three quantum numbers and these are: n, l and m.
You should have knowledge of n, l quantum numbers for this question. So let us discuss them one by one.
- n is known as the principal quantum number and it is a positive integer with value = 1, 2, 3...... . This quantum number identifies the shell.
- l is known as the azimuthal quantum number or orbital quantum number. For, a given value of n, l can have values from 0 to n−1. For example, when n=3, the possible values for l= 0, 1, 2. For each value of l, there is a corresponding sub-shell and subshells are represented as follows:
Value of l | Subshell notation |
---|---|
0 | s |
1 | p |
2 | d |
3 | f |
4... | g... |
Thus, values of l define the sub-shells.
There are (2l+1) orbitals in each subshell. For example, when l= 2, orbitals are five (2×2+1=5)
Now, we are given in that l= 3,
Therefore, for l= 3, subshell is f.
Orbitals for l= 3: 2l+1=2×3+1=7 orbitals.
Hence, according to the above calculation, the correct option is C.
Note: In an orbital, maximum two electrons can exist and each electron has an opposite spin. We have calculated that, for l= 3, subshell is f and there are 7 orbitals. So, the maximum number of electrons that can exist in f subshell are 14.