Solveeit Logo

Question

Mathematics Question on Three Dimensional Geometry

If L1L_1 is the line of intersection of the planes 2x2y+3z2=0,xy+z+1=02x - 2y + 3z - 2 =0, x - y + z + 1 = 0 and L2L_2 is the line of intersection of the planes x+2yz3=0,3xy+2z1=0,x + 2y - z - 3 = 0, 3x - y + 2z - 1 = 0, then the distance of the origin from the plane, containing the lines L1L_1 and L2L_2, is:

A

142\frac{1}{4 \sqrt{2}}

B

132\frac{1}{3\sqrt{2}}

C

122\frac{1}{2\sqrt{2}}

D

12\frac{1}{\sqrt{2}}

Answer

132\frac{1}{3\sqrt{2}}

Explanation

Solution

L1L_1 is parallel to i^j^k^ 223 111=i^+j^\begin{vmatrix}\hat{i}&\hat{j}&\hat{k}\\\ 2&-2&3\\\ 1&-1&1\end{vmatrix}=\hat{i}+\hat{j}
L2L_2 is parallel to i^j^k^ 121 312=3i^5j^7k^\begin{vmatrix}\hat{i}&\hat{j}&\hat{k}\\\ 1&2&-1\\\ 3&-1&2\end{vmatrix}=3\hat{i}-5\hat{j}-7\hat{k}
Also, L2L_2 passes through (57,87,0)\left(\frac{5}{7}, \frac{8}{7},0\right)
So, required plane is x57y87z 110 357=0\begin{vmatrix}x-\frac{5}{7}&y-\frac{8}{7}&z\\\ 1&1&0\\\ 3&-5&-7\end{vmatrix}=0
7x7y+8z+3=0\Rightarrow 7x - 7y + 8z + 3 = 0
Now, perpendicular distance =3162=132=\frac{3}{\sqrt{162}}=\frac{1}{3\sqrt{2}}