Solveeit Logo

Question

Question: If \({{L}_{1}}\) is the line of intersection of the planes \(2x-2y+3z-2=0\), \(x-y+z+1=0\) and \({{L...

If L1{{L}_{1}} is the line of intersection of the planes 2x2y+3z2=02x-2y+3z-2=0, xy+z+1=0x-y+z+1=0 and L2{{L}_{2}} is the line of intersection of the planes x+2yz3=0x+2y-z-3=0, 3xy+2z1=03x-y+2z-1=0, then the distance of origin from the plane containing lines L1{{L}_{1}} and L2{{L}_{2}} is

Explanation

Solution

We solve this question by first finding the direction ratios of line L1{{L}_{1}} from the direction ratios of given planes. Then we find the direction ratios of line L2{{L}_{2}} using the other two given planes direction ratios. Then we find the direction ratios of line normal to the plane containing both the lines by finding the cross product of direction ratios of lines L1{{L}_{1}} and L2{{L}_{2}}. Then we use the formula for the equation of the plane having normal direction ratios using formula ax+by+cz+d=0ax+by+cz+d=0. Then we use any point on line L1{{L}_{1}} and substitute it in the plane equation obtained to find the value of d. Then we substitute the obtained d value to get the required equation of plane.

Complete step-by-step answer:
Let us assume that the direction ratios of L1{{L}_{1}} are (l,m,n)\left( l,m,n \right) and L2{{L}_{2}} are (p,q,r)\left( p,q,r \right).
As L1{{L}_{1}} is the intersection of the planes 2x2y+3z2=02x-2y+3z-2=0 and xy+z+1=0x-y+z+1=0, it is present in both the planes. Then the angle between the line and the plane is zero.
Now, let us consider the formula for angle between line with direction ratios (l,m,n)\left( l,m,n \right) and plane ax+by+cz+d=0ax+by+cz+d=0
sinθ=al+bm+cna2+b2+c2l2+m2+n2\sin \theta =\dfrac{al+bm+cn}{\sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}\sqrt{{{l}^{2}}+{{m}^{2}}+{{n}^{2}}}}
When the angle between them is zero,
sin0=0=al+bm+cna2+b2+c2l2+m2+n2 al+bm+cn=0 \begin{aligned} & \sin {{0}^{\circ }}=0=\dfrac{al+bm+cn}{\sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}\sqrt{{{l}^{2}}+{{m}^{2}}+{{n}^{2}}}} \\\ & al+bm+cn=0 \\\ \end{aligned}
So, applying above formula we get that
2l2m+3n=0 lm+n=0 \begin{aligned} & 2l-2m+3n=0 \\\ & l-m+n=0 \\\ \end{aligned}
Solving them we get,
l23 11 =m23 11 =n22 11  l(2+3)=m(23)=n(2+2) l1=m1=n0 \begin{aligned} & \Rightarrow \dfrac{l}{\left| \begin{matrix} -2 & 3 \\\ -1 & 1 \\\ \end{matrix} \right|}=\dfrac{m}{-\left| \begin{matrix} 2 & 3 \\\ 1 & 1 \\\ \end{matrix} \right|}=\dfrac{n}{\left| \begin{matrix} 2 & -2 \\\ 1 & -1 \\\ \end{matrix} \right|} \\\ & \Rightarrow \dfrac{l}{\left( -2+3 \right)}=\dfrac{m}{-\left( 2-3 \right)}=\dfrac{n}{\left( -2+2 \right)} \\\ & \Rightarrow \dfrac{l}{1}=\dfrac{m}{1}=\dfrac{n}{0} \\\ \end{aligned}
So, we get the direction ratios of L1{{L}_{1}} as (1,1,0)\left( 1,1,0 \right).
Now let us consider the second line.
As L2{{L}_{2}} is the intersection of the planes x+2yz3=0x+2y-z-3=0 and 3xy+2z1=03x-y+2z-1=0, it is present in both the planes. Then the angle between the line and the plane is zero.
Using the above discussed formula when angle between line and plane is zero,
al+bm+cn=0al+bm+cn=0
So, applying above formula we get that
p+2qr=0 3pq+2r=0 \begin{aligned} & p+2q-r=0 \\\ & 3p-q+2r=0 \\\ \end{aligned}
Solving them we get,
p21 12 =q11 32 =r12 31  p(41)=q(2+3)=r(16) p3=q5=r7 \begin{aligned} & \Rightarrow \dfrac{p}{\left| \begin{matrix} 2 & -1 \\\ -1 & 2 \\\ \end{matrix} \right|}=\dfrac{q}{-\left| \begin{matrix} 1 & -1 \\\ 3 & 2 \\\ \end{matrix} \right|}=\dfrac{r}{\left| \begin{matrix} 1 & 2 \\\ 3 & -1 \\\ \end{matrix} \right|} \\\ & \Rightarrow \dfrac{p}{\left( 4-1 \right)}=\dfrac{q}{-\left( 2+3 \right)}=\dfrac{r}{\left( -1-6 \right)} \\\ & \Rightarrow \dfrac{p}{3}=\dfrac{q}{-5}=\dfrac{r}{-7} \\\ \end{aligned}
So, we get the direction ratios of L2{{L}_{2}} as (3,5,7)\left( 3,-5,-7 \right).
We need to find the plane containing the lines L1{{L}_{1}} and L2{{L}_{2}}. So, any line normal to the plane is normal to the lines L1{{L}_{1}} and L2{{L}_{2}}.
Now let us consider the concept that any line perpendicular to two lines a and b is of the form a×ba\times b.
So, using this formula, normal to the required plane have direction ratios L1×L2{{L}_{1}}\times {{L}_{2}}.
So, by finding the cross product of direction ratios of L1{{L}_{1}} and L2{{L}_{2}}, we get,
ijk 110 357 =i10 57 j10 37 +k11 35  ijk 110 357 =7i+7j8k \begin{aligned} & \Rightarrow \left| \begin{matrix} i & j & k \\\ 1 & 1 & 0 \\\ 3 & -5 & -7 \\\ \end{matrix} \right|=i\left| \begin{matrix} 1 & 0 \\\ -5 & -7 \\\ \end{matrix} \right|-j\left| \begin{matrix} 1 & 0 \\\ 3 & -7 \\\ \end{matrix} \right|+k\left| \begin{matrix} 1 & 1 \\\ 3 & -5 \\\ \end{matrix} \right| \\\ & \Rightarrow \left| \begin{matrix} i & j & k \\\ 1 & 1 & 0 \\\ 3 & -5 & -7 \\\ \end{matrix} \right|=-7i+7j-8k \\\ \end{aligned}
So, we get the direction ratios of normal as (7,7,8)\left( -7,7,-8 \right).
Let us use the formula for equation of plane with normal having direction ratios (a,b,c)\left( a,b,c \right) is
ax+by+cz+d=0ax+by+cz+d=0
Using the above formula equation of plane with normal having direction ratios (7,7,8)\left( -7,7,-8 \right) is
7x+7y8z+d=0\Rightarrow -7x+7y-8z+d=0
As line L1{{L}_{1}} is in the plane any point on the line is on the plane. So, let us find any point on the line L1{{L}_{1}}.
As L1{{L}_{1}} is the intersection of the planes 2x2y+3z2=02x-2y+3z-2=0 and xy+z+1=0x-y+z+1=0, any point on this line satisfies both the plane equations.
Let us assume the point with x=0. Then
2x2y+3z2=0 2y+3z2=0 \begin{aligned} & \Rightarrow 2x-2y+3z-2=0 \\\ & \Rightarrow -2y+3z-2=0 \\\ \end{aligned}
xy+z+1=0 y+z+1=0 y=z+1 \begin{aligned} & \Rightarrow x-y+z+1=0 \\\ & \Rightarrow -y+z+1=0 \\\ & \Rightarrow y=z+1 \\\ \end{aligned}
Substituting this value of y in above equation we get,
2(z+1)+3z2=0 2z2+3z2=0 z4=0 z=4 \begin{aligned} & \Rightarrow -2\left( z+1 \right)+3z-2=0 \\\ & \Rightarrow -2z-2+3z-2=0 \\\ & \Rightarrow z-4=0 \\\ & \Rightarrow z=4 \\\ \end{aligned}
So, using this value we can get value of y as,
y=z+1=4+1=5\Rightarrow y=z+1=4+1=5
So, we get that the point (0,5,4)\left( 0,5,4 \right) is on the line L1{{L}_{1}}. So, it must satisfy the equation of the plane containing L1{{L}_{1}} and L2{{L}_{2}}. So, substituting the point in the equation of plane we get,
7x+7y8z+d=0 7(0)+7(5)8(4)+d=0 0+3532+d=0 d+3=0 d=3 \begin{aligned} & \Rightarrow -7x+7y-8z+d=0 \\\ & \Rightarrow -7\left( 0 \right)+7\left( 5 \right)-8\left( 4 \right)+d=0 \\\ & \Rightarrow 0+35-32+d=0 \\\ & \Rightarrow d+3=0 \\\ & \Rightarrow d=-3 \\\ \end{aligned}
So, substituting this value in the equation of the plane we get,
7x+7y8z3=0 7x7y+8z+3=0 \begin{aligned} & \Rightarrow -7x+7y-8z-3=0 \\\ & \Rightarrow 7x-7y+8z+3=0 \\\ \end{aligned}
Hence the equation of the plane containing lines L1{{L}_{1}} and L2{{L}_{2}} is 7x7y+8z+3=07x-7y+8z+3=0.
Hence, the answer is 7x7y+8z+3=07x-7y+8z+3=0.

Note: The common mistake that one makes while solving this problem is one might get confused and take the formula for the angle between the line and plane as
cosθ=al+bm+cna2+b2+c2l2+m2+n2\cos \theta =\dfrac{al+bm+cn}{\sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}\sqrt{{{l}^{2}}+{{m}^{2}}+{{n}^{2}}}}
But it is wrong. We take cosine in the formula for angle between two lines and sine for angle between line and plane.