Question
Question: If k\(\begin{bmatrix} - 1 & 2 & 2 \\ 2 & - 1 & 2 \\ 2 & 2 & - 1 \end{bmatrix}\)is an orthogonal mat...
If k$\begin{bmatrix}
- 1 & 2 & 2 \ 2 & - 1 & 2 \ 2 & 2 & - 1 \end{bmatrix}$is an orthogonal matrix then k is equal to-
A
1
B
½
C
1/3
D
None of these
Answer
1/3
Explanation
Solution
Let A = k$\begin{bmatrix}
- 1 & 2 & 2 \ 2 & - 1 & 2 \ 2 & 2 & - 1 \end{bmatrix}A<sup>T</sup>=k\begin{bmatrix}
- 1 & 2 & 2 \ 2 & - 1 & 2 \ 2 & 2 & - 1 \end{bmatrix}$
Since A is orthogonal \ AAT = I
̃ k2 $\begin{bmatrix}
- 1 & 2 & 2 \ 2 & - 1 & 2 \ 2 & 2 & - 1 \end{bmatrix}\begin{bmatrix}
- 1 & 2 & 2 \ 2 & - 1 & 2 \ 2 & 2 & - 1 \end{bmatrix}$= I
̃ k2900090009= Ĩ 9k2 I = I ̃ k2 = 1/9 ̃ k = ±1/3