Solveeit Logo

Question

Chemistry Question on Equilibrium

If KspK_{sp} of CaF2CaF_2 at 25??25^?? is 1.7×10101.7 \times 10^{-10}, the combination amongst the following which gives a precipitate of CaF2CaF_2 is

A

1×102MCa2+1 \times 10^{-2} M \,Ca^{2+} and 1×103MF1 \times 10^{-3} MF^-

B

1×104MCa2+1 \times 10^{-4} M \,Ca^{2+} and 1×104MF1 \times 10^{-4} MF^-

C

1×102MCa2+1 \times 10^{-2} M \,Ca^{2+} and 1×105MF1 \times 10^{-5} MF^-

D

1×103MCa2+1 \times 10^{-3} M \,Ca^{2+} and 1×105MF1 \times 10^{-5} MF^-

Answer

1×102MCa2+1 \times 10^{-2} M \,Ca^{2+} and 1×103MF1 \times 10^{-3} MF^-

Explanation

Solution

When ionic product i.e. the product of the concentration of ions in the solution exceeds the value of solubility product, formation of precitpiate occurs. CaF2<=>Ca2++2F {CaF2<=>Ca^{2+} + 2F^-} Ionic product =[Ca2+][F]2= [Ca^{2+}] [F^-]^2 when, [Ca2+]=1×102M[Ca^{2+}] = 1 \times 10 ^{-2} \,M [F]2=(1×103)2M[F^-]^2 = (1 \times 10^{-3})^2\,M =1×106M=1 \times 10^{-6}\,M [Ca2+][F]2=(1×102)(1×106)=1×108\therefore \left[Ca^{2+}\right] \left[F^{-}\right]^{2}= \left(1\times10^{-2}\right) \left(1\times 10^{-6}\right) = 1\times 10^{-8} In this case, Ionic product (1×108)>\left(1\times 10^{8}\right) > solubility product (1.7×1010)\left(1.7\times 10^{-10}\right) \therefore Hence (a) is correct option.