Solveeit Logo

Question

Question: If \[k = \sin \dfrac{\pi }{{18}}\sin \dfrac{{5\pi }}{{18}}\sin \dfrac{{7\pi }}{{18}}\], then the num...

If k=sinπ18sin5π18sin7π18k = \sin \dfrac{\pi }{{18}}\sin \dfrac{{5\pi }}{{18}}\sin \dfrac{{7\pi }}{{18}}, then the numerical value of kk is
A) 14\dfrac{1}{4}
B) 18\dfrac{1}{8}
C) 116\dfrac{1}{16}
D) None of the above

Explanation

Solution

We are provided with trigonometric functions and we are asked to find the numerical value by solving those functions. In this trigonometric problem the trigonometric functions are in multiplication. In order to find the numerical value of sinπ18sin5π18sin7π18\sin \dfrac{\pi }{{18}}\sin \dfrac{{5\pi }}{{18}}\sin \dfrac{{7\pi }}{{18}} convert them into the terms of degrees. In trigonometry, pi (π\pi ) means 1800{180^0} to represent the angle in radians. Therefore, sinπ=1800\sin \pi = {180^0}.

Trigonometric values to be remembered:
sin00=0\sin {0^0} = 0, sin300=12\sin {30^0} = \dfrac{1}{2}, sin450=12\sin {45^0} = \dfrac{1}{{\sqrt 2 }}, sin600=32\sin {60^0} = \dfrac{{\sqrt 3 }}{2} and sin900=1\sin {90^0} = 1.
cos00=1\cos {0^0} = 1, cos300=32\cos {30^0} = \dfrac{{\sqrt 3 }}{2}, cos450=12\cos {45^0} = \dfrac{1}{{\sqrt 2 }}, cos600=12\cos {60^0} = \dfrac{1}{2} and cos900=0\cos {90^0} = 0.

Complete step by step solution:
We are given the problem,
k=sinπ18sin5π18sin7π18k = \sin \dfrac{\pi }{{18}}\sin \dfrac{{5\pi }}{{18}}\sin \dfrac{{7\pi }}{{18}}
We already mentioned that sinπ=1800\sin \pi = {180^0}, by substituting this,
=sin180018sin5(1800)18sin7(1800)18= \sin \dfrac{{{{180}^0}}}{{18}}\sin \dfrac{{5({{180}^0})}}{{18}}\sin \dfrac{{7({{180}^0})}}{{18}}
By dividing 18018\dfrac{{180}}{{18}} we will get 1010,
=sin100sin5(100)sin7(100)= \sin {10^0}\sin 5({10^0})\sin 7({10^0})
Multiplying the values inside the bracket,
=sin100sin500sin700= \sin {10^0}\sin {50^0}\sin {70^0}
For further simplification let us multiply and divide the first two terms by 22,
=12[2(sin100sin500)]sin700= \dfrac{1}{2}\left[ {2(\sin {{10}^0}\sin {{50}^0})} \right]\sin {70^0}
We have the trigonometry formula: 2sinAsinB=cos(AB)cos(A+B)2\sin A\sin B = \cos (A - B) - \cos (A + B), by applying this formula,
=12[cos(100500)cos(100+500)]sin700= \dfrac{1}{2}\left[ {\cos ({{10}^0} - {{50}^0}) - \cos ({{10}^0} + {{50}^0})} \right]\sin {70^0}
=12[cos(400)cos600]sin700= \dfrac{1}{2}\left[ {\cos ( - {{40}^0}) - \cos {{60}^0}} \right]\sin {70^0}
cos(θ)=cosθ\cos ( - \theta ) = \cos \theta , therefore cos(400)=cos400\cos ( - {40^0}) = \cos {40^0},
By applying this,
=12[cos400cos600]sin700= \dfrac{1}{2}\left[ {\cos {{40}^0} - \cos {{60}^0}} \right]\sin {70^0}
We know that the value of cos600=12\cos {60^0} = \dfrac{1}{2}, by substituting this,
=12[cos40012]sin700= \dfrac{1}{2}\left[ {\cos {{40}^0} - \dfrac{1}{2}} \right]\sin {70^0}
Now multiplying sin700\sin {70^0} inside the bracket,
=12[cos400sin70012sin700]= \dfrac{1}{2}\left[ {\cos {{40}^0}\sin {{70}^0} - \dfrac{1}{2}\sin {{70}^0}} \right]
Multiply and divide cos400sin700\cos {40^0}\sin {70^0} by 22 for further simplification,
=12[12(2(cos400sin700))12sin700]= \dfrac{1}{2}\left[ {\dfrac{1}{2}\left( {2(\cos {{40}^0}\sin {{70}^0})} \right) - \dfrac{1}{2}\sin {{70}^0}} \right]
Here 12\dfrac{1}{2} is common for both the terms inside the bracket, so let's take it as common outside,
=12×12[2cos400sin700sin700]= \dfrac{1}{2} \times \dfrac{1}{2}\left[ {2\cos {{40}^0}\sin {{70}^0} - \sin {{70}^0}} \right]
We have another formula that, 2cosAsinB=sin(A+B)sin(AB)2\cos A\sin B = \sin (A + B) - \sin (A - B), by applying this,
=14[sin(400+700)sin(400700)sin700]= \dfrac{1}{4}\left[ {\sin ({{40}^0} + {{70}^0}) - \sin ({{40}^0} - {{70}^0}) - \sin {{70}^0}} \right]
=14[sin1100sin(300)sin700]= \dfrac{1}{4}\left[ {\sin {{110}^0} - \sin ( - {{30}^0}) - \sin {{70}^0}} \right]
And the value of sin(θ)=sinθ\sin ( - \theta ) = - \sin \theta , hence sin(300)=sin(300)\sin ( - {30^0}) = - \sin ({30^0}), apply this,
=14[sin1100(sin300)sin700]= \dfrac{1}{4}\left[ {\sin {{110}^0} - ( - \sin {{30}^0}) - \sin {{70}^0}} \right]
Now the ×- \times - will become ++, because ×=+- \times - = + then,
=14[sin1100+sin300sin700]= \dfrac{1}{4}\left[ {\sin {{110}^0} + \sin {{30}^0} - \sin {{70}^0}} \right]
We know that sin300=12\sin {30^0} = \dfrac{1}{2},
=14[sin1100+12sin700]= \dfrac{1}{4}\left[ {\sin {{110}^0} + \dfrac{1}{2} - \sin {{70}^0}} \right]
We can also write sin(x)=sin(180x)\sin (x) = \sin (180 - x), therefore, sin(1100)=sin(1800700)=sin(700)\sin ({110^0}) = \sin ({180^0} - {70^0}) = \sin ({70^0})
=14[sin700+12sin700]= \dfrac{1}{4}\left[ {\sin {{70}^0} + \dfrac{1}{2} - \sin {{70}^0}} \right]
Now +sin700 + \sin {70^0} and sin700 - \sin {70^0} will cancel each other,
=14[12]= \dfrac{1}{4}\left[ {\dfrac{1}{2}} \right]
=18= \dfrac{1}{8}
k=18\therefore k = \dfrac{1}{8}
Hence, option (B) 18\dfrac{1}{8} is correct.

Note:
One should study all the formulas and values based on trigonometry thoroughly. Then only one can get any idea about how to solve these types of questions. Here in two steps we multiply and divide the terms by 22. Remember that any number multiplying and dividing by the same number will not make any changes in the value, but still we follow this step to provide some clue and thus to carry forward the problems. Thus we change the values in the form of formulas and solve them easily.