Solveeit Logo

Question

Question: If \(k\) is the solution of the equation \(\sqrt {2x + 1} - \sqrt {2x - 1} = 1\,\,\left( {x \geqslan...

If kk is the solution of the equation 2x+12x1=1(x12)\sqrt {2x + 1} - \sqrt {2x - 1} = 1\,\,\left( {x \geqslant \dfrac{1}{2}} \right) then 4x21\sqrt {4{x^2} - 1} is equal to:
a)34 b)12 c)22 d)2  a) \,\dfrac{3}{4} \\\ b) \,\dfrac{1}{2} \\\ c) \,2\sqrt 2 \\\ d) \,2 \\\

Explanation

Solution

We know the identity (ab)(a+b)=a2b2(a - b)(a + b) = {a^2} - {b^2}, apply this identity and square both the given equations and simplify it to get the desired answer.

Complete step-by-step answer:
So we are provided with the equation
2x+12x1=1\sqrt {2x + 1} - \sqrt {2x - 1} = 1
Now let squaring both side, we get
(ab)2=a2+b22ab{(a - b)^2} = {a^2} + {b^2} - 2ab
(2x+1)2+(2x1)22(2x+1)(2x1)=1 2x+1+2x124x21=1 4x24x21=1 4x1=24x21 4x21=4x12(2)  \Rightarrow {\left( {\sqrt {2x + 1} } \right)^2} + {\left( {\sqrt {2x - 1} } \right)^2} - 2\left( {\sqrt {2x + 1} } \right)\left( {\sqrt {2x - 1} } \right) = 1 \\\ \Rightarrow 2x + 1 + 2x - 1 - 2\sqrt {4{x^2} - 1} = 1 \\\ \Rightarrow 4x - 2\sqrt {4{x^2} - 1} = 1 \\\ \Rightarrow 4x - 1 = 2\sqrt {4{x^2} - 1} \\\ \Rightarrow \sqrt {4{x^2} - 1} = \dfrac{{4x - 1}}{2}\,\,\,\,\,\,\,\,\,\,\,\,\,\, \to \left( 2 \right) \\\
Now let us rearrange the given equation.
2x+1=1+2x1\sqrt {2x + 1} = 1 + \sqrt {2x - 1}
We can write it like this, now squaring both side
2x+12=12+2x12+22x1 2x+1=1+2x1+22x1 1=22x1 2x1=12  {\sqrt {2x + 1} ^2} = {1^2} + {\sqrt {2x - 1} ^2} + 2\sqrt {2x - 1} \\\ 2x + 1 = 1 + 2x - 1 + 2\sqrt {2x - 1} \\\ 1 = 2\sqrt {2x - 1} \\\ \sqrt {2x - 1} = \dfrac{1}{2} \\\
We got 2x1=12\sqrt {2x - 1} = \dfrac{1}{2}
Now squaring both side, we will get
2x1=14 2x=14+1 2x=54&x=58  2x - 1 = \dfrac{1}{4} \\\ 2x = \dfrac{1}{4} + 1 \\\ 2x = \dfrac{5}{4}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,x = \dfrac{5}{8} \\\
So finally we get the value of x i.e. 58\dfrac{5}{8}
Now we calculate that
4x21=4x12\sqrt {4{x^2} - 1} = \dfrac{{4x - 1}}{2}now putting x=58x = \dfrac{5}{8}in this we get,
4x21=4×5812=34\sqrt {4{x^2} - 1} = \dfrac{{4 \times \dfrac{5}{8} - 1}}{2} = \dfrac{3}{4}
So our answer is 34\dfrac{3}{4}

Note: Alternative method:
We got the value of 2x1=12(1)\sqrt {2x - 1} = \dfrac{1}{2}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, \to \left( 1 \right)
And also we are given that 2x+12x1=1\sqrt {2x + 1} - \sqrt {2x - 1} = 1. So putting 2x1=12\sqrt {2x - 1} = \dfrac{1}{2}in the equation. We will get-
2x+112=1 2x+1=12+1 2x+1=32(2)  \sqrt {2x + 1} - \dfrac{1}{2} = 1 \\\ \sqrt {2x + 1} = \dfrac{1}{2} + 1 \\\ \sqrt {2x + 1} = \dfrac{3}{2}\,\,\,\,\,\,\,\,\,\, \to \left( 2 \right) \\\
Multiplying (1) and (2) we get
2x+1×2x1=12×32 4x2+1=34  \sqrt {2x + 1} \times \sqrt {2x - 1} = \dfrac{1}{2}\,\, \times \dfrac{3}{2}\,\, \\\ \sqrt {4{x^2} + 1} = \dfrac{3}{4} \\\
Hence our answer is 34\dfrac{3}{4}.