Solveeit Logo

Question

Question: If k is the length of any edge of a regular tetrahedron then the distance of any vertex from the opp...

If k is the length of any edge of a regular tetrahedron then the distance of any vertex from the opposite face is –

A

3/2 k

B

2/3 k2

C

23\sqrt{\frac{2}{3}}k

D

3\sqrt{3}k

Answer

23\sqrt{\frac{2}{3}}k

Explanation

Solution

OABC be a regular tetrahedron.. O be the origin Position vector of ABC be a, b, c; |a| = |b| = |c| = k

|a.b| = |b.c| = |c.a| = k2 cos 60º =12\frac{1}{2}k2

a.a = b.b = c.c = k2

[a, b, c] = a.aa.ba.cb.ab.bb.cc.ac.bc.c\left| \begin{matrix} a.a & a.b & a.c \\ b.a & b.b & b.c \\ c.a & c.b & c.c \end{matrix} \right| ̃ 12\frac{1}{2} k6

Also |a × c + c × a + a × b| is twice the area of the triangle ABC so this is (3\sqrt{3}/2)k2

The equation of the plane ABC is

r. [b × c + c × a + a × b] ̃ [a b c]

So the distance of the vector O, from this plane

[abc][b×c+c×a+a×b]\frac{\lbrack abc\rbrack}{\lbrack b \times c + c \times a + a \times b\rbrack} ̃ 12k332k2\frac{\frac{1}{\sqrt{2}}k^{3}}{\frac{\sqrt{3}}{2}k^{2}} ̃ 23\sqrt{\frac{2}{3}}k