Question
Mathematics Question on Transpose of a Matrix
If k is one of the roots of the equation x2−25x+24=0 such that A=1 3 122113k; is a non-singular matrix, then A−1 =
A
−46190 −138 2−9446280−8
B
−92145 −69 1−47231404
C
−46145 −69 1−4723140−4
D
−92190 −138 2−9446280−8
Answer
−92145 −69 1−47231404
Explanation
Solution
x2−25x+24=0…(i)
x2−x−24x+24=0
=x(x−1)−24(x−1)=0
=(x−1)(x−24)=0
⇒x=1,24
∵k is one of the root of the E (i),
∴k=1,24
If k=1,
∴A=1 3 1221131
∣A∣=1(2−3)−2(3−3)+1(3−2)
=−1−0+1=0
∣A∣=0
k=1, not possible, because given matrix A is singular.
Now, k=24,
∴A=1 3 12211324
∣A∣=1(48−3)−2(72−3)+1(3−2)
=45−138+1=−92=0
adj A=45 −47 4−6923011−41 =45 −69 1−4723140−4
A−1=∣A∣1⋅adjA
=−92145 −69 1−4723140−4