Solveeit Logo

Question

Mathematics Question on Transpose of a Matrix

If kk is one of the roots of the equation x225x+24=0x^2 - 25x + 24 = 0 such that A=[121 323 11k;]A = \begin{bmatrix}1&2&1\\\ 3&2&3\\\ 1&1&k;\end{bmatrix} is a non-singular matrix, then A1A^{-1} =

A

146[90948 138460 228]- \frac{1}{46} \begin{bmatrix}90&-94&8\\\ -138&46&0\\\ 2&2&-8\end{bmatrix}

B

192[45474 69230 114]- \frac{1}{92} \begin{bmatrix}45&-47&4\\\ -69&23&0\\\ 1&1&4\end{bmatrix}

C

146[45474 69230 114]- \frac{1}{46} \begin{bmatrix}45&-47&4\\\ -69&23&0\\\ 1&1&-4\end{bmatrix}

D

192[90948 138460 228]- \frac{1}{92} \begin{bmatrix}90&-94&8\\\ -138&46&0\\\ 2&2&-8\end{bmatrix}

Answer

192[45474 69230 114]- \frac{1}{92} \begin{bmatrix}45&-47&4\\\ -69&23&0\\\ 1&1&4\end{bmatrix}

Explanation

Solution

x225x+24=0x^{2}-25 x+24=0 \dots(i)
x2x24x+24=0x^{2}-x-24 x+24 = 0
=x(x1)24(x1)=0= x(x-1)-24(x-1)= 0
=(x1)(x24)=0= (x-1)(x-24) =0
x=1,24\Rightarrow x=1,24
k\because k is one of the root of the E (i),
k=1,24\therefore k=1, 24
If k=1k = 1,
A=[121 323 111]\therefore A= \begin{bmatrix} 1 & 2 & 1 \\\ 3 & 2 & 3 \\\ 1 & 1 & 1\end{bmatrix}
A=1(23)2(33)+1(32)|A| =1(2-3)-2(3-3)+1(3-2)
=10+1=0=-1-0+1=0
A=0|A| =0
k=1k=1, not possible, because given matrix AA is singular.
Now, k=24k=24,
A=[121 323 1124]\therefore A =\begin{bmatrix} 1 & 2 & 1 \\\ 3 & 2 & 3 \\\ 1 & 1 & 24\end{bmatrix}
A=1(483)2(723)+1(32)|A| =1(48-3)-2(72-3)+1(3-2)
=45138+1=920=45-138+1=-92 \neq 0
adj A=[45691 47231 404]1A =\begin{bmatrix} 45 & -69 & 1 \\\ -47 & 23 & 1 \\\ 4 & 0 & -4\end{bmatrix}^{1} =[45474 69230 114]=\begin{bmatrix}45 & -47 & 4 \\\ -69 & 23 & 0 \\\ 1 & 1 & -4\end{bmatrix}
A1=1AadjAA^{-1} =\frac{1}{|A|} \cdot \text{adj} A
=192[45474 69230 114]=-\frac{1}{92}\begin{bmatrix}45 & -47 & 4 \\\ -69 & 23 & 0 \\\ 1 & 1 & -4\end{bmatrix}