Solveeit Logo

Question

Question: If k \(\begin{bmatrix} - 1 & 2 & 2 \\ 2 & - 1 & 2 \\ 2 & 2 & - 1 \end{bmatrix}\) is an orthogonal m...

If k $\begin{bmatrix}

  • 1 & 2 & 2 \ 2 & - 1 & 2 \ 2 & 2 & - 1 \end{bmatrix}$ is an orthogonal matrix then k is equal to
A

1

B

1/3

C

½

D

None of these

Answer

1/3

Explanation

Solution

since A is orthogonal \ AAT = I

̃k2 [122212221]\left[ \begin{array} { c c c } - 1 & 2 & 2 \\ 2 & - 1 & 2 \\ 2 & 2 & - 1 \end{array} \right] $\begin{bmatrix}

  • 1 & 2 & 2 \ 2 & - 1 & 2 \ 2 & 2 & - 1 \end{bmatrix}$ = I

̃ k2[900090009]\begin{bmatrix} 9 & 0 & 0 \\ 0 & 9 & 0 \\ 0 & 0 & 9 \end{bmatrix} = I

̃ 9k2I = I ̃ k = ± 1/3