Solveeit Logo

Question

Question: If \(K{a_1},\,K{a_2}\,{\text{and}}\,K{a_3}\,\) for \({{\text{H}}_{\text{3}}}{\text{P}}{{\text{O}}_{\...

If Ka1,Ka2andKa3K{a_1},\,K{a_2}\,{\text{and}}\,K{a_3}\, for H3PO4{{\text{H}}_{\text{3}}}{\text{P}}{{\text{O}}_{\text{4}}}are 103{10^{ - 3}}, 108{10^{ - 8}} and 1012{10^{ - 12}} respectively. If Kw(H2O)=1014{K_w}\left( {{{\text{H}}_{\text{2}}}{\text{O}}} \right) = {10^{ - 14}},
(i) What is the dissociation constant for HPO42{\text{HP}}{{\text{O}}_{\text{4}}}^{2 - }
(ii) What is Kb{K_b} of HPO42{\text{HP}}{{\text{O}}_{\text{4}}}^{2 - }
(iii) What is Kb{K_b} of H2PO4{{\text{H}}_2}{\text{P}}{{\text{O}}_{\text{4}}}^ -
(iv) What is order of Kb{K_b} of PO43{\text{P}}{{\text{O}}_{\text{4}}}^{3 - } (Kb3)\left( {K{b_3}} \right)
, HPO42{\text{HP}}{{\text{O}}_{\text{4}}}^{2-} (Kb2)\left({K{b_2}}\right) and H2PO4{{\text{H}}_2}{\text{P}}{{\text{O}}_{\text{4}}}^ - (Kb1)\left( {K{b_1}} \right)

Explanation

Solution

We know that some acids such as oxalic acid, sulphuric acid etc. have more than one ionizable proton per molecule of the acid. These acids are known as polybasic acids. These acids will ionize or dissociate in more than one step. Phosphoric acid (H3PO4)\left( {{{\text{H}}_{\text{3}}}{\text{P}}{{\text{O}}_{\text{4}}}} \right) is a polybasic acid.

Complete step by step answer:
(i) Given that first (Ka1)\left( {K{a_1}} \right), second (Ka2)\left( {\,K{a_2}\,} \right) and third ionization constant of H3PO4{{\text{H}}_{\text{3}}}{\text{P}}{{\text{O}}_{\text{4}}} are 103{10^{ - 3}} , 108{10^{ - 8}} and 1012{10^{ - 12}} respectively.
First dissociation reaction is,
H3PO4H++(H2PO4),Ka1=103{{\text{H}}_{\text{3}}}{\text{P}}{{\text{O}}_{\text{4}}} \rightleftharpoons {{\text{H}}^ + } + {\left( {{{\text{H}}_{\text{2}}}{\text{P}}{{\text{O}}_{\text{4}}}} \right)^ - }\,,\,K{a_1} = {10^{ - 3}}…… (1)
Second dissociation reaction is,
(H2PO4)H++(HPO4)2,Ka2=108{\left( {{{\text{H}}_{\text{2}}}{\text{P}}{{\text{O}}_{\text{4}}}}\right)^-}\rightleftharpoons {{\text{H}}^ + } + {\left( {{\text{HP}}{{\text{O}}_{\text{4}}}} \right)^{2 - }},K{a_2} = {10^{ - 8}}….. (2)
Third dissociation constant is,
(HPO4)2H++(PO4)3,Ka3=1012{\left( {{\text{HP}}{{\text{O}}_{\text{4}}}} \right)^{- 2}} \rightleftharpoons {{\text{H}}^ + } + {\left( {{\text{P}}{{\text{O}}_{\text{4}}}} \right)^{ - 3}},K{a_3} = {10^{ - 12}}…… (3)
From equation (2), we get to know that dissociation constant of HPO42{\text{HP}}{{\text{O}}_{\text{4}}}^{2 - } is 108{10^{ - 8}}.
(ii) For a reaction, KaKa is calculated for conjugate acid and Kb{K_b} is calculated for conjugate base. To calculate Kb{K_b}, we have to use the below formula.
Kw=Ka×Kb{K_w} = Ka \times {K_b}
Here, Kw{K_w} is ionization constant of water, KaKa is ionization constant and Kb{K_b} is basic constant.
Given that KaKa of HPO42{\text{HP}}{{\text{O}}_{\text{4}}}^{2 - } is 108{10^{ - 8}} and Kw=1014{K_w} = {10^{ - 14}}
So, Kb=KwKa=1014108=106 \Rightarrow {K_b} = \dfrac{{{K_w}}}{{Ka}} = \dfrac{{{{10}^{ - 14}}}}{{{{10}^{ - 8}}}} = {10^{ - 6}}
Therefore, Kb{K_b} of HPO42{\text{HP}}{{\text{O}}_{\text{4}}}^{2 - } is 106{10^{ - 6}}.
(iii) Now we have to calculate the Kb{K_b} of H2PO4{{\text{H}}_2}{\text{P}}{{\text{O}}_{\text{4}}}^ -
as in part (ii).
Given that KaKa of H2PO4{{\text{H}}_2}{\text{P}}{{\text{O}}_{\text{4}}}^ - is 103{10^{ - 3}} and Kw=1014{K_w} = {10^{ - 14}}
So, Kb=KwKa=1014103=1011 \Rightarrow {K_b} = \dfrac{{{K_w}}}{{Ka}} = \dfrac{{{{10}^{ - 14}}}}{{{{10}^{ - 3}}}} = {10^{ - 11}}
Therefore, Kb{K_b} of H2PO4{{\text{H}}_2}{\text{P}}{{\text{O}}_{\text{4}}}^ - is 1011{10^{ - 11}}.
(iv) So, from the above calculation we calculated that,
Kb{K_b} of H2PO4{{\text{H}}_2}{\text{P}}{{\text{O}}_{\text{4}}}^ - (Kb1)\left( {{K_b}_{_1}} \right)
is 1011{10^{ - 11}}
Kb{K_b} of HPO42{\text{HP}}{{\text{O}}_{\text{4}}}^{2 - } (Kb2)\left( {{K_b}_{_2}} \right) is 106{10^{ - 6}}
Now, we have calculate the Kb{K_b} of PO43{\text{P}}{{\text{O}}_{\text{4}}}^{3 - } (Kb3)\left( {{K_b}_{_3}} \right).
Given that KaKa of PO43{\text{P}}{{\text{O}}_{\text{4}}}^{ - 3} is 1012{10^{ - 12}}
and Kw=1014{K_w} = {10^{ - 14}}
Kb=KwKa=10141012=102\Rightarrow {K_b} = \dfrac{{{K_w}}}{{Ka}} = \dfrac{{{{10}^{ - 14}}}}{{{{10}^{ - 12}}}} = {10^{ - 2}}
So, the value of Kb3=102K{b_3} = {10^{ - 2}}
Kb3>kb2>kb1{K_b}_{_3} > {k_b}_{_2} > {k_b}_{_1}

Note: It is to be noted that it is always difficult to remove a positively charged species (proton) from a negatively charged ions as compared to a neutral molecule because of the strong electrostatic force of attraction between proton and the anion with which it is present. As a result, the removal of proton from a monovalent anion is quite difficult and is even more difficult to remove the same from a divalent anion. Thus, the order of dissociation constants can be justified.