Solveeit Logo

Question

Question: If \({k_1} = \tan 27\theta - \tan \theta \) and \({k_2} = \dfrac{{\sin \theta }}{{\cos 3\theta }} + ...

If k1=tan27θtanθ{k_1} = \tan 27\theta - \tan \theta and k2=sinθcos3θ+sin3θcos9θ+sin9θcos27θ{k_2} = \dfrac{{\sin \theta }}{{\cos 3\theta }} + \dfrac{{\sin 3\theta }}{{\cos 9\theta }} + \dfrac{{\sin 9\theta }}{{\cos 27\theta }} , then
A) k1=2k2{k_1} = 2{k_2}
B) k1=k2+4{k_1} = {k_2} + 4
C) k1=k2{k_1} = {k_2}
D) None of these

Explanation

Solution

It is given in the question that k1=tan27θtanθ{k_1} = \tan 27\theta - \tan \theta and k2=sinθcos3θ+sin3θcos9θ+sin9θcos27θ{k_2} = \dfrac{{\sin \theta }}{{\cos 3\theta }} + \dfrac{{\sin 3\theta }}{{\cos 9\theta }} + \dfrac{{\sin 9\theta }}{{\cos 27\theta }}
Firstly, we will find the value of tan3θtanθ\tan 3\theta - \tan \theta , tan9θtan3θ\tan 9\theta - \tan 3\theta , tan27θtan9θ\tan 27\theta - \tan 9\theta using formula sin(AB)=sinAcosBcosAsinB\sin \left( {A - B} \right) = \sin A\cos B - \cos A\sin B and sin2A=2sinAcosA\sin 2A = 2\sin A\cos A .
Then after, we will add the values of tan3θtanθ\tan 3\theta - \tan \theta , tan9θtan3θ\tan 9\theta - \tan 3\theta , tan27θtan9θ\tan 27\theta - \tan 9\theta to get k1=tan27θtanθ{k_1} = \tan 27\theta - \tan \theta and k2=sinθcos3θ+sin3θcos9θ+sin9θcos27θ{k_2} = \dfrac{{\sin \theta }}{{\cos 3\theta }} + \dfrac{{\sin 3\theta }}{{\cos 9\theta }} + \dfrac{{\sin 9\theta }}{{\cos 27\theta }} .
Finally, solving further we will get the required answer.

Complete step by step solution:
It is given in the question that k1=tan27θtanθ{k_1} = \tan 27\theta - \tan \theta and k2=sinθcos3θ+sin3θcos9θ+sin9θcos27θ{k_2} = \dfrac{{\sin \theta }}{{\cos 3\theta }} + \dfrac{{\sin 3\theta }}{{\cos 9\theta }} + \dfrac{{\sin 9\theta }}{{\cos 27\theta }}
Now, first tan3θ=sin3θcos3θ\tan 3\theta = \dfrac{{\sin 3\theta }}{{\cos 3\theta }} .
tan3θtanθ=sin3θcos3θsinθcosθ\therefore \tan 3\theta - \tan \theta = \dfrac{{\sin 3\theta }}{{\cos 3\theta }} - \dfrac{{\sin \theta }}{{\cos \theta }}
tan3θtanθ=sin3θcosθsinθcos3θcos3θcosθ\therefore \tan 3\theta - \tan \theta = \dfrac{{\sin 3\theta \cos \theta - \sin \theta \cos 3\theta }}{{\cos 3\theta \cos \theta }}
Since, we know that sin(AB)=sinAcosBcosAsinB\sin \left( {A - B} \right) = \sin A\cos B - \cos A\sin B and sin2A=2sinAcosA\sin 2A = 2\sin A\cos A .
Now, let A=3θA = 3\theta and B=θB = \theta .
Therefore, by applying formula in the above equation, we get,
tan3θtanθ=sin(3θθ)cos3θcosθ\therefore \tan 3\theta - \tan \theta = \dfrac{{\sin \left( {3\theta - \theta } \right)}}{{\cos 3\theta \cos \theta }}
tan3θtanθ=sin2θcos3θcosθ\therefore \tan 3\theta - \tan \theta = \dfrac{{\sin 2\theta }}{{\cos 3\theta \cos \theta }}
Since, sin2θ=2sinθcosθ\sin 2\theta = 2\sin \theta \cos \theta
tan3θtanθ=2sinθcosθcos3θcosθ\therefore \tan 3\theta - \tan \theta = \dfrac{{2\sin \theta \cos \theta }}{{\cos 3\theta \cos \theta }}
tan3θtanθ=2sinθcos3θ\therefore \tan 3\theta - \tan \theta = \dfrac{{2\sin \theta }}{{\cos 3\theta }} (I)
Similarly, using above method we will find the value of tan9θtan3θ\tan 9\theta - \tan 3\theta
tan9θtan3θ=sin9θcos9θsin3θcos3θ\therefore \tan 9\theta - \tan 3\theta = \dfrac{{\sin 9\theta }}{{\cos 9\theta }} - \dfrac{{\sin 3\theta }}{{\cos 3\theta }}
tan9θtan3θ=sin9θcos3θsin3θcos9θcos9θcos3θ\therefore \tan 9\theta - \tan 3\theta = \dfrac{{\sin 9\theta \cos 3\theta - \sin 3\theta \cos 9\theta }}{{\cos 9\theta \cos 3\theta }}
tan9θtan3θ=sin(9θ3θ)cos9θcos3θ\therefore \tan 9\theta - \tan 3\theta = \dfrac{{\sin \left( {9\theta - 3\theta } \right)}}{{\cos 9\theta \cos 3\theta }}
tan9θtan3θ=sin6θcos9θcos3θ\therefore \tan 9\theta - \tan 3\theta = \dfrac{{\sin 6\theta }}{{\cos 9\theta \cos 3\theta }}
tan9θtan3θ=2sin3θcos3θcos9θcos3θ\therefore \tan 9\theta - \tan 3\theta = \dfrac{{2\sin 3\theta \cos 3\theta }}{{\cos 9\theta \cos 3\theta }}
tan9θtan3θ=2sin3θcos9θ\therefore \tan 9\theta - \tan 3\theta = \dfrac{{2\sin 3\theta }}{{\cos 9\theta }} (II)
Similarly, using above method we will find the value of tan27θtan9θ\tan 27\theta - \tan 9\theta
tan27θtan9θ=sin27θcos27θsin9θcos9θ\therefore \tan 27\theta - \tan 9\theta = \dfrac{{\sin 27\theta }}{{\cos 27\theta }} - \dfrac{{\sin 9\theta }}{{\cos 9\theta }}
tan27θtan9θ=sin27θcos9θsin9θcos27θcos27θcos9θ\therefore \tan 27\theta - \tan 9\theta = \dfrac{{\sin 27\theta \cos 9\theta - \sin 9\theta \cos 27\theta }}{{\cos 27\theta \cos 9\theta }}
tan27θtan9θ=sin(27θ9θ)cos27θcos9θ\therefore \tan 27\theta - \tan 9\theta = \dfrac{{\sin \left( {27\theta - 9\theta } \right)}}{{\cos 27\theta \cos 9\theta }}
tan27θtan9θ=sin18θcos27θcos9θ\therefore \tan 27\theta - \tan 9\theta = \dfrac{{\sin 18\theta }}{{\cos 27\theta \cos 9\theta }}
tan27θtan9θ=2sin9θcos9θcos27θcos9θ\therefore \tan 27\theta - \tan 9\theta = \dfrac{{2\sin 9\theta \cos 9\theta }}{{\cos 27\theta \cos 9\theta }}
tan27θtan9θ=2sin9θcos27θ\therefore \tan 27\theta - \tan 9\theta = \dfrac{{2\sin 9\theta }}{{\cos 27\theta }} (III)
Now, add equation (I), (II) and (III), we get,
(tan27θtan9θ)+(tan9θtan3θ)+(tan3θtanθ)=2sin9θcos27θ+2sin3θcos9θ+2sinθcos3θ\therefore \left( {\tan 27\theta - \tan 9\theta } \right) + \left( {\tan 9\theta - \tan 3\theta } \right) + \left( {\tan 3\theta - \tan \theta } \right) = \dfrac{{2\sin 9\theta }}{{\cos 27\theta }} + \dfrac{{2\sin 3\theta }}{{\cos 9\theta }} + \dfrac{{2\sin \theta }}{{\cos 3\theta }}
(tan27θtanθ)=2(sin9θcos27θ+sin3θcos9θ+sinθcos3θ)\therefore \left( {\tan 27\theta - \tan \theta } \right) = 2\left( {\dfrac{{\sin 9\theta }}{{\cos 27\theta }} + \dfrac{{\sin 3\theta }}{{\cos 9\theta }} + \dfrac{{\sin \theta }}{{\cos 3\theta }}} \right)
(tan27θtanθ)=2(sinθcos3θ+sin3θcos9θ+sin9θcos27θ)\therefore \left( {\tan 27\theta - \tan \theta } \right) = 2\left( {\dfrac{{\sin \theta }}{{\cos 3\theta }} + \dfrac{{\sin 3\theta }}{{\cos 9\theta }} + \dfrac{{\sin 9\theta }}{{\cos 27\theta }}} \right)
Since, we have given the question that k1=tan27θtanθ{k_1} = \tan 27\theta - \tan \theta and k2=sinθcos3θ+sin3θcos9θ+sin9θcos27θ{k_2} = \dfrac{{\sin \theta }}{{\cos 3\theta }} + \dfrac{{\sin 3\theta }}{{\cos 9\theta }} + \dfrac{{\sin 9\theta }}{{\cos 27\theta }}
k1=2k2\therefore {k_1} = 2{k_2}

Hence, option (A) is correct.

Note:
As sin,cos\sin ,\cos and tan\tan functions are the most commonly used trigonometry ratio.
Some properties containing functions of sin,cos\sin ,\cos and tan\tan are as follows:
tanθ=sinθcosθ\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}
sin2θ+cos2θ=1{\sin ^2}\theta + {\cos ^2}\theta = 1
sin2θ=2sinθcosθ\sin 2\theta = 2\sin \theta \cos \theta
cos2θ=cos2θsin2θ\cos 2\theta = {\cos ^2}\theta - {\sin ^2}\theta
tan2θ=2tanθ1+tan2θ\tan 2\theta = \dfrac{{2\tan \theta }}{{1 + {{\tan }^2}\theta }}