Question
Question: If \({k_1} = \tan 27\theta - \tan \theta \) and \({k_2} = \dfrac{{\sin \theta }}{{\cos 3\theta }} + ...
If k1=tan27θ−tanθ and k2=cos3θsinθ+cos9θsin3θ+cos27θsin9θ , then
A) k1=2k2
B) k1=k2+4
C) k1=k2
D) None of these
Solution
It is given in the question that k1=tan27θ−tanθ and k2=cos3θsinθ+cos9θsin3θ+cos27θsin9θ
Firstly, we will find the value of tan3θ−tanθ , tan9θ−tan3θ , tan27θ−tan9θ using formula sin(A−B)=sinAcosB−cosAsinB and sin2A=2sinAcosA .
Then after, we will add the values of tan3θ−tanθ , tan9θ−tan3θ , tan27θ−tan9θ to get k1=tan27θ−tanθ and k2=cos3θsinθ+cos9θsin3θ+cos27θsin9θ .
Finally, solving further we will get the required answer.
Complete step by step solution:
It is given in the question that k1=tan27θ−tanθ and k2=cos3θsinθ+cos9θsin3θ+cos27θsin9θ
Now, first tan3θ=cos3θsin3θ .
∴tan3θ−tanθ=cos3θsin3θ−cosθsinθ
∴tan3θ−tanθ=cos3θcosθsin3θcosθ−sinθcos3θ
Since, we know that sin(A−B)=sinAcosB−cosAsinB and sin2A=2sinAcosA .
Now, let A=3θ and B=θ .
Therefore, by applying formula in the above equation, we get,
∴tan3θ−tanθ=cos3θcosθsin(3θ−θ)
∴tan3θ−tanθ=cos3θcosθsin2θ
Since, sin2θ=2sinθcosθ
∴tan3θ−tanθ=cos3θcosθ2sinθcosθ
∴tan3θ−tanθ=cos3θ2sinθ (I)
Similarly, using above method we will find the value of tan9θ−tan3θ
∴tan9θ−tan3θ=cos9θsin9θ−cos3θsin3θ
∴tan9θ−tan3θ=cos9θcos3θsin9θcos3θ−sin3θcos9θ
∴tan9θ−tan3θ=cos9θcos3θsin(9θ−3θ)
∴tan9θ−tan3θ=cos9θcos3θsin6θ
∴tan9θ−tan3θ=cos9θcos3θ2sin3θcos3θ
∴tan9θ−tan3θ=cos9θ2sin3θ (II)
Similarly, using above method we will find the value of tan27θ−tan9θ
∴tan27θ−tan9θ=cos27θsin27θ−cos9θsin9θ
∴tan27θ−tan9θ=cos27θcos9θsin27θcos9θ−sin9θcos27θ
∴tan27θ−tan9θ=cos27θcos9θsin(27θ−9θ)
∴tan27θ−tan9θ=cos27θcos9θsin18θ
∴tan27θ−tan9θ=cos27θcos9θ2sin9θcos9θ
∴tan27θ−tan9θ=cos27θ2sin9θ (III)
Now, add equation (I), (II) and (III), we get,
∴(tan27θ−tan9θ)+(tan9θ−tan3θ)+(tan3θ−tanθ)=cos27θ2sin9θ+cos9θ2sin3θ+cos3θ2sinθ
∴(tan27θ−tanθ)=2(cos27θsin9θ+cos9θsin3θ+cos3θsinθ)
∴(tan27θ−tanθ)=2(cos3θsinθ+cos9θsin3θ+cos27θsin9θ)
Since, we have given the question that k1=tan27θ−tanθ and k2=cos3θsinθ+cos9θsin3θ+cos27θsin9θ
∴k1=2k2
Hence, option (A) is correct.
Note:
As sin,cos and tan functions are the most commonly used trigonometry ratio.
Some properties containing functions of sin,cos and tan are as follows:
tanθ=cosθsinθ
sin2θ+cos2θ=1
sin2θ=2sinθcosθ
cos2θ=cos2θ−sin2θ
tan2θ=1+tan2θ2tanθ