Solveeit Logo

Question

Chemistry Question on Equilibrium

If K1K_1 and K2K_2 are the respective equilibrium constants for the two reactions. XeF6(g)+H2O(g)<=>XeOF4(g)+2HF(g) {XeF6_{(g)} +H2O_{(g)}<=> XeOF4_{(g)} +2HF_{(g)}} XeO4(g)+XeF6(g)<=>XeOF4(g)+XeO3F2(g) {XeO4_{(g)} +XeF6_{(g)} <=> XeOF4_{(g)} +XeO3F2_{(g)}} The equilibrium constant for the reaction, XeO4(g)+2HF(g)<=>XeO3F2(g)+H2O(g) {XeO4_{(g)} +2HF_{(g)} <=> XeO3F2_{(g)} +H2O_{(g)}} is

A

K1K2K_1K_2

B

K1/K22K_1/K^2_2

C

K2/K1K_2/K_1

D

K1/K22K_1/K^2_2

Answer

K2/K1K_2/K_1

Explanation

Solution

K1=[XeOF4][HF]2[XeF6][H2O](i)K_{1}=\frac{\left[XeOF_{4}\right]\left[HF\right]^{2}}{\left[XeF_{6}\right]\left[H_{2}O\right]} \ldots\left(i\right) K2=[XeOF4][XeO3F2][XeO4][XeF6](ii)K_{2}=\frac{\left[XeOF_{4}\right]\left[XeO_{3}F_{2}\right]}{\left[XeO_{4}\right]\left[XeF_{6}\right]}\ldots\left(ii\right) Dividing E (ii)\left(ii\right) by (i)\left(i\right) we have K2K1=[XeO3F2][H2O][XeO4][HF]2=K\frac{K_{2}}{K_{1}}=\frac{\left[XeO_{3}F_{2}\right]\left[H_{2}O\right]}{\left[XeO_{4}\right]\left[HF\right]^{2}}=K'