Solveeit Logo

Question

Question: If k>0, \(\left| z \right|=\left| w \right|=k\) and \(\alpha =\dfrac{z-\bar{w}}{{{k}^{2}}+z\bar{w}}\...

If k>0, z=w=k\left| z \right|=\left| w \right|=k and α=zwˉk2+zwˉ\alpha =\dfrac{z-\bar{w}}{{{k}^{2}}+z\bar{w}} then Re(α\alpha ) equals to
a) 0
b) k2\dfrac{k}{2}
c) kk
d) None of those.

Explanation

Solution

We know that any complex number z has two parts, one real part and one imaginary part. We can write z=x+iyz=x+iy where Re(z)=x and Im(z)=iy. We know that zˉ=xiy\bar{z}=x-iy ,we can calculate the value of x and y using both the equation, we will get x=z+zˉ2x=\dfrac{z+\bar{z}}{2} and y=zzˉ2y=\dfrac{z-\bar{z}}{2} i.e. Re(z)= z+zˉ2\dfrac{z+\bar{z}}{2} and Im(z)= zzˉ2\dfrac{z-\bar{z}}{2}. Similarly, for any conjugate number a, Re(a)= a+aˉ2\dfrac{a+\bar{a}}{2} and Im(a)= aaˉ2\dfrac{a-\bar{a}}{2}.
So Re(α\alpha )=α+αˉ2\dfrac{\alpha +\bar{\alpha }}{2}. We will find αˉ\bar{\alpha } and put it in the equation. We know that zzˉ=z2z\bar{z}={{\left| z \right|}^{2}} ,we c\will get the value of k2 using this formula.

Complete step-by-step answer:
We have, α=zwˉk2+zwˉ\alpha =\dfrac{z-\bar{w}}{{{k}^{2}}+z\bar{w}}
Let z be any complex number,
z=x+iy........(i)\Rightarrow z=x+iy........(i)
We know that,
zˉ=xiy........(ii)\Rightarrow \bar{z}=x-iy........(ii)
We will add both equation(i) and equation(ii), we get,
x=z+zˉ2\Rightarrow x=\dfrac{z+\bar{z}}{2}
We can also say that x=z+zˉ2x=\dfrac{z+\bar{z}}{2} is nothing but real part of z ,so,
Re(z)=z+zˉ2\operatorname{Re}(z)=\dfrac{z+\bar{z}}{2}
Similarly, we can say that real part of α,
Re(α)=α+αˉ2\operatorname{Re}(\alpha )=\dfrac{\alpha +\bar{\alpha }}{2}
Multiplying equation(i) and equation(ii), we get,
zzˉ=(x+iy)(xiy) zzˉ=x2+y2  \begin{aligned} & \Rightarrow z\bar{z}=\left( x+iy \right)\left( x-iy \right) \\\ & \Rightarrow z\bar{z}={{x}^{2}}+{{y}^{2}} \\\ & \\\ \end{aligned}
We know that x2+y2=z2{{x}^{2}}+{{y}^{2}}={{\left| z \right|}^{2}},
zzˉ=z2......(iii)\Rightarrow z\bar{z}={{\left| z \right|}^{2}}......(iii)
We have z=w=k\left| z \right|=\left| w \right|=k,
We square the above equation, we will get,
z2=w2=k2\Rightarrow {{\left| z \right|}^{2}}={{\left| w \right|}^{2}}={{k}^{2}}
Using equation(iii), we can say that,
z2=k2=zzˉ w2=k2=wwˉ \begin{aligned} & \Rightarrow {{\left| z \right|}^{2}}={{k}^{2}}=z\bar{z} \\\ & \Rightarrow {{\left| w \right|}^{2}}={{k}^{2}}=w\bar{w} \\\ \end{aligned}
We know that Re(α)=α+αˉ2\operatorname{Re}(\alpha )=\dfrac{\alpha +\bar{\alpha }}{2} and we have , α=zwˉk2+zwˉ\alpha =\dfrac{z-\bar{w}}{{{k}^{2}}+z\bar{w}} we will calculate αˉ\bar{\alpha } and put it into equation,

& \Rightarrow \bar{\alpha }=\dfrac{\bar{z}-\bar{\bar{w}}}{{{k}^{2}}+\bar{z}\times \bar{\bar{w}}} \\\ & \\\ & \Rightarrow \bar{\alpha }=\dfrac{\bar{z}-w}{{{k}^{2}}+\bar{z}w} \\\ & \\\ & \Rightarrow \operatorname{Re}(\alpha )=\dfrac{1}{2}\left( \alpha +\bar{\alpha } \right) \\\ & \Rightarrow \operatorname{Re}(\alpha )=\dfrac{1}{2}\left( \dfrac{z-\bar{w}}{{{k}^{2}}+z\bar{w}}+\dfrac{\bar{z}-w}{{{k}^{2}}+\bar{z}w} \right) \\\ & \\\ & \Rightarrow \dfrac{\left( z-\bar{w} \right)\left( {{k}^{2}}+\bar{z}w \right)+\left( \bar{z}-w \right)\left( {{k}^{2}}+z\bar{w} \right)}{\left( {{k}^{2}}+z\bar{w} \right)\left( {{k}^{2}}+\bar{z}w \right)} \\\ \end{aligned}$$ $$\Rightarrow \dfrac{z{{k}^{2}}+z\bar{z}w-{{k}^{2}}\bar{w}-\bar{w}w\bar{z}+\bar{z}{{k}^{2}}+\bar{z}z\bar{w}-w{{k}^{2}}-zw\bar{w}}{\left( {{k}^{2}}+z\bar{w} \right)\left( {{k}^{2}}+\bar{z}w \right)}$$ We know that, $\begin{aligned} & \Rightarrow {{\left| z \right|}^{2}}={{k}^{2}}=z\bar{z} \\\ & \Rightarrow {{\left| w \right|}^{2}}={{k}^{2}}=w\bar{w} \\\ \end{aligned}$ We can solve the numerator using this, we get, $$\Rightarrow \dfrac{z{{k}^{2}}+{{k}^{2}}w-{{k}^{2}}\bar{w}-\bar{z}{{k}^{2}}+\bar{z}{{k}^{2}}+{{k}^{2}}\bar{w}-{{k}^{2}}w-z{{k}^{2}}}{\left( {{k}^{2}}+z\bar{w} \right)\left( {{k}^{2}}+\bar{z}w \right)}$$ We will get zero in the numerator so we can say that, $$\Rightarrow \operatorname{Re}(\alpha )=$$0 **So, the correct answer is “Option A”.** **Note:** The student must be clear with the concepts of complex numbers like conjugate of a complex number and modulus of a complex number. Don’t put the values of k, z, w in equation $\alpha =\dfrac{z-\bar{w}}{{{k}^{2}}+z\bar{w}}$ we have to calculate the real part of α not the value of α. Most of the time students get confused and make this mistake. Solve the expression carefully, try to eliminate as many variables as possible by substituting the values from the given condition.