Solveeit Logo

Question

Question: If it takes \(5\;{\rm{minutes}}\) to fill a \(15\;{\rm{L}}\) bucket from a water tap of diameter \(\...

If it takes 5  minutes5\;{\rm{minutes}} to fill a 15  L15\;{\rm{L}} bucket from a water tap of diameter 2π  cm\dfrac{2}{{\sqrt \pi }}\;{\rm{cm}} then the Reynolds number for the flow is ( density of water =103  kg/kgm3m3 = {10^3}\;{{{\rm{kg}}} {\left/ {\vphantom {{{\rm{kg}}} {{{\rm{m}}^3}}}} \right. } {{{\rm{m}}^3}}} and viscosity of water =103  Pa.s = {10^{ - 3}}\;{\rm{Pa}}{\rm{.s}}) close to

Explanation

Solution

First, we will use the discharge expression because discharge can give information about the water volume that comes out from the water tap. After this, all the information required for the Reynolds number calculation is given to use the given information directly in Reynold's number expression.

Complete step by step answer:
It is given to us that 5  minutes5\;{\rm{minutes}} are required to fill the 15  L15\;{\rm{L}} bucket, so from this information, we will calculate the magnitude of the discharge in one minute, so

Q=vtQ = \dfrac{v}{t}

Here, vv is the volume of the bucket and tt is the total time.

Substitute the values in the above equation.

Therefore, we get

Q=15  L5  min Q=3  L/Lminmin\begin{array}{l} Q = \dfrac{{15\;{\rm{L}}}}{{5\;{\rm{min}}}}\\\ Q = 3\;{{\rm{L}} {\left/ {\vphantom {{\rm{L}} {{\rm{min}}}}} \right. } {{\rm{min}}}} \end{array} …… (1)

Now we will determine the volume of the water that flows from the tap in one second with discharge expression. So,

Q=VAQ = VA

Here, VV is the volume of the water flowing in one second and AA cross-sectional area of the tap.

We know that the formula of the cross-sectional area of the tap is A=πd24A = \dfrac{{\pi {d^2}}}{4}, so use this formula in the above equation.
Q=V×πd24 V=4Qπd2\begin{array}{l} Q = V \times \dfrac{{\pi {d^2}}}{4}\\\ V = \dfrac{{4Q}}{{\pi {d^2}}} \end{array} …… (2)

Write the expression of the Reynold number.

R=ρVdηR = \dfrac{{\rho Vd}}{\eta }

Here, ρ\rho is the water's density, dd is the diameter of the tap, and η\eta is the viscosity of the water.

From equation (2), substitute the values of VV in the above equation. So, the above equation becomes,

R=ρ(4Qπd2)dη R=4ρQπdη\begin{array}{l} R = \dfrac{{\rho \left( {\dfrac{{4Q}}{{\pi {d^2}}}} \right)d}}{\eta }\\\ R = \dfrac{{4\rho Q}}{{\pi d\eta }} \end{array}

Substitute the values in the above equation.

Therefore, we get

R = \dfrac{{4\left( {{{10}^3}\;{{{\rm{kg}}} {\left/ {\vphantom {{{\rm{kg}}} {{{\rm{m}}^3}}}} \right. } {{{\rm{m}}^3}}}} \right)\left( {3\;{{\rm{L}} {\left/ {\vphantom {{\rm{L}} {{\rm{min}} \times \dfrac{{1\;{\rm{min}}}}{{60\;{\rm{s}}}} \times \dfrac{{{{10}^{ - 3}}\;{{\rm{m}}^3}}}{{1\;{\rm{L}}}}}}} \right. } {{\rm{min}} \times \dfrac{{1\;{\rm{min}}}}{{60\;{\rm{s}}}} \times \dfrac{{{{10}^{ - 3}}\;{{\rm{m}}^3}}}{{1\;{\rm{L}}}}}}} \right)}}{{\pi \left( {\dfrac{2}{{\sqrt \pi }}\;{\rm{cm}} \times \dfrac{{1\;{\rm{m}}}}{{100\;{\rm{cm}}}}} \right)\left( {{{10}^{ - 3}}\;{\rm{pa}}{\rm{.s}} \times \dfrac{{0.1\;{{{\rm{kg}}} {\left/ {\vphantom {{{\rm{kg}}} {{{\rm{m}}^2}}}} \right. } {{{\rm{m}}^2}}}}}{{1\;{\rm{pa}}}}} \right)}}\\\ R = \dfrac{{4 \times {{10}^3}\;{{{\rm{kg}}} {\left/ {\vphantom {{{\rm{kg}}} {{{\rm{m}}^3}}}} \right. } {{{\rm{m}}^3}}} \times 5 \times {{10}^{ - 5}}\;{{{{\rm{m}}^{ - 3}}} {\left/ {\vphantom {{{{\rm{m}}^{ - 3}}} {\rm{s}}}} \right. } {\rm{s}}}}}{{0.0354\;{\rm{m}} \times {{10}^{ - 4}}{{{\rm{kg}}} {\left/ {\vphantom {{{\rm{kg}}} {{{\rm{m}}^2}}}} \right. } {{{\rm{m}}^2}}}}}\\\ R \approx 56490 \end{array}$$ _Therefore, the Reynolds number for the flow is close to $56490$._ **Note:** In this solution, unit conversion of the various physical terms is very important, so remember the different units of all the terms and put them during the calculation. So that all the units get canceled out in the end, and we can get the constant Reynold number.