Solveeit Logo

Question

Question: If it is given that \(x=a\left( \cos t+\log \tan \dfrac{t}{2} \right)\), \(y=a\sin t\), find \(\dfra...

If it is given that x=a(cost+logtant2)x=a\left( \cos t+\log \tan \dfrac{t}{2} \right), y=asinty=a\sin t, find d2ydt2\dfrac{{{d}^{2}}y}{d{{t}^{2}}} and d2ydx2\dfrac{{{d}^{2}}y}{d{{x}^{2}}}.

Explanation

Solution

In order to solve the question, we have to calculate two things first one is d2ydt2\dfrac{{{d}^{2}}y}{d{{t}^{2}}} which is easier just differentiate yy two times with respect tt. The other one is d2ydx2\dfrac{{{d}^{2}}y}{d{{x}^{2}}} which involves little bit of complexity, first calculate dydt\dfrac{dy}{dt} and dxdt\dfrac{dx}{dt} then divide to get dydx\dfrac{dy}{dx} and then differentiate with respect to xxin order to get d2ydx2\dfrac{{{d}^{2}}y}{d{{x}^{2}}} .

Complete step by step answer:
It is given that x=a(cost+logtant2)x=a\left( \cos t+\log \tan \dfrac{t}{2} \right) and y=asinty=a\sin t.
As y=asinty=a\sin t
dydt=ddt(asint)\Rightarrow \dfrac{dy}{dt}=\dfrac{d}{dt}\left( a\sin t \right)
As we know that the derivative of sinx\sin x is cosx\cos x i.e. ddx(sinx)=cosx\dfrac{d}{dx}\left( \sin x \right)=\cos x
dydt=acost....................(1)\Rightarrow \dfrac{dy}{dt}=a\cos t....................(1)
We also know that the derivative of cosx\cos x is sinx-\sin x i.e. ddx(cosx)=sinx\dfrac{d}{dx}\left( \cos x \right)=-\sin x
d2ydt2=ddt(dydt)=ddt(acost)=asint\Rightarrow \dfrac{{{d}^{2}}y}{d{{t}^{2}}}=\dfrac{d}{dt}\left( \dfrac{dy}{dt} \right)=\dfrac{d}{dt}\left( a\cos t \right)=-a\sin t
Now, we have to calculate d2ydx2\dfrac{{{d}^{2}}y}{d{{x}^{2}}} . So first we have to calculate dydx\dfrac{dy}{dx} and then differentiate with respect to xx and get d2ydx2\dfrac{{{d}^{2}}y}{d{{x}^{2}}}.

As there is no any direct relation between yy and xx so we cannot directly calculate dydx\dfrac{dy}{dx}. So, in order to calculate dydx\dfrac{dy}{dx} we have to first calculate dydt\dfrac{dy}{dt} and dxdt\dfrac{dx}{dt} then divide to get dydx\dfrac{dy}{dx} .
Now, from equation (1), we get dydt=acost\dfrac{dy}{dt}=a\cos t
As, x=a(cost+logtant2)x=a\left( \cos t+\log \tan \dfrac{t}{2} \right)
dxdt=ddt(a(cost+logtant2))\Rightarrow \dfrac{dx}{dt}=\dfrac{d}{dt}\left( a\left( \cos t+\log \tan \dfrac{t}{2} \right) \right)
dxdt=ddt(acost)+ddt(alogtant2)..............(2)\Rightarrow \dfrac{dx}{dt}=\dfrac{d}{dt}\left( a\cos t \right)+\dfrac{d}{dt}\left( a\log \tan \dfrac{t}{2} \right)..............(2)
In order to get ddt(alogtant2)\dfrac{d}{dt}\left( a\log \tan \dfrac{t}{2} \right), we have to apply chain rule which state that the derivative of f(g(x))f\left( g\left( x \right) \right) is f(g(x))g(x)f'\left( g\left( x \right) \right)\cdot g'\left( x \right). In other words, it helps us differentiate composite functions.
Now, ddt(alogtant2)=d(alogtant2)d(tant2)×d(tant2)d(t2)×d(t2)dt\dfrac{d}{dt}\left( a\log \tan \dfrac{t}{2} \right)=\dfrac{d\left( a\log \tan \dfrac{t}{2} \right)}{d\left( \tan \dfrac{t}{2} \right)}\times \dfrac{d\left( \tan \dfrac{t}{2} \right)}{d\left( \dfrac{t}{2} \right)}\times \dfrac{d\left( \dfrac{t}{2} \right)}{dt}
As we know that the derivative of logx\log x is 1x\dfrac{1}{x} i.e. ddx(logx)=1x\dfrac{d}{dx}(\log x)=\dfrac{1}{x}.
Similarly, the derivative of tanx\tan x is sec2x{{\sec }^{2}}x i.e. ddx(tanx)=sec2x\dfrac{d}{dx}(\tan x)={{\sec }^{2}}x, substituting all those values in above equation, we get
ddt(alogtant2)=atant2×sec2t2×12\Rightarrow \dfrac{d}{dt}\left( a\log \tan \dfrac{t}{2} \right)=\dfrac{a}{\tan \dfrac{t}{2}}\times {{\sec }^{2}}\dfrac{t}{2}\times \dfrac{1}{2}
Substituting sect2=1cost2\sec \dfrac{t}{2}=\dfrac{1}{\cos \dfrac{t}{2}} and tant2=sint2cost2\tan \dfrac{t}{2}=\dfrac{\sin \dfrac{t}{2}}{\cos \dfrac{t}{2}} in the above equation, we get
ddt(alogtant2)=acost22sint2cos2t2=a2sint2cost2=asint\Rightarrow \dfrac{d}{dt}\left( a\log \tan \dfrac{t}{2} \right)=\dfrac{a\cos \dfrac{t}{2}}{2\sin \dfrac{t}{2}{{\cos }^{2}}\dfrac{t}{2}}=\dfrac{a}{2\sin \dfrac{t}{2}\cos \dfrac{t}{2}}=\dfrac{a}{\sin t}
Substituting the value of ddt(alogtant2)\dfrac{d}{dt}\left( a\log \tan \dfrac{t}{2} \right) in equation (2), we get
dxdt=asint+asint......................(3)\Rightarrow \dfrac{dx}{dt}=-a\sin t+\dfrac{a}{\sin t}......................(3)
Dividing equation (1) with (3), we get
dydx=dydtdxdt=acostasint+asint...............(4)\Rightarrow \dfrac{dy}{dx}=\dfrac{\dfrac{dy}{dt}}{\dfrac{dx}{dt}}=\dfrac{a\cos t}{-a\sin t+\dfrac{a}{\sin t}}...............(4)
We have to differentiate it again with respect to xx. We will use the quotient rule for the same. It is given by ddx[f(x)g(x)]=f(x).g(x)f(x).g(x)[g(x)]2\dfrac{d}{dx}\left[ \dfrac{f\left( x \right)}{g\left( x \right)} \right]=\dfrac{f'\left( x \right).g\left( x \right)-f\left( x \right).g'\left( x \right)}{{{\left[ g\left( x \right) \right]}^{2}}} . Now, using it, we get
d2ydx2=ddx(acost)(asint+asint)acostddx(asint+asint)(asint+asint)2\Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{\dfrac{d}{dx}\left( a\cos t \right)\left( -a\sin t+\dfrac{a}{\sin t} \right)-a\cos t\dfrac{d}{dx}\left( -a\sin t+\dfrac{a}{\sin t} \right)}{{{\left( -a\sin t+\dfrac{a}{\sin t} \right)}^{2}}}
d2ydx2=asint×dtdx(asint+asint)acost(acostdtdxasin2t×costdtdx)(asint+asint)2\Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{-a\sin t\times \dfrac{dt}{dx}\left( -a\sin t+\dfrac{a}{\sin t} \right)-a\cos t\left( -a\cos t\dfrac{dt}{dx}-\dfrac{a}{{{\sin }^{2}}t}\times \cos t\dfrac{dt}{dx} \right)}{{{\left( -a\sin t+\dfrac{a}{\sin t} \right)}^{2}}}
We know that from equation (3), dxdt=asint+asintdtdx=1asint+asint\dfrac{dx}{dt}=-a\sin t+\dfrac{a}{\sin t}\Rightarrow \dfrac{dt}{dx}=\dfrac{1}{-a\sin t+\dfrac{a}{\sin t}}
So putting the value of dtdx\dfrac{dt}{dx} in above equation, we get
d2ydx2=asint×1(asint+asint)(asint+asint)+a2cos2t(1+1sin2t)×1(asint+asint)(asint+asint)2\Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{-a\sin t\times \dfrac{1}{\left( -a\sin t+\dfrac{a}{\sin t} \right)}\left( -a\sin t+\dfrac{a}{\sin t} \right)+{{a}^{2}}{{\cos }^{2}}t\left( 1+\dfrac{1}{{{\sin }^{2}}t} \right)\times \dfrac{1}{\left( -a\sin t+\dfrac{a}{\sin t} \right)}}{{{\left( -a\sin t+\dfrac{a}{\sin t} \right)}^{2}}}
d2ydx2=asint+a2cos2t(1+1sin2t)×sintacos2t(asint+asint)2\Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{-a\sin t+{{a}^{2}}{{\cos }^{2}}t\left( 1+\dfrac{1}{{{\sin }^{2}}t} \right)\times \dfrac{\sin t}{a{{\cos }^{2}}t}}{{{\left( -a\sin t+\dfrac{a}{\sin t} \right)}^{2}}}
d2ydx2=asint+(asint+asin2t)(asint+asint)2\Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{-a\sin t+\left( a\sin t+\dfrac{a}{{{\sin }^{2}}t} \right)}{{{\left( -a\sin t+\dfrac{a}{\sin t} \right)}^{2}}}
d2ydx2=asin2ta2(1sin2t)2sin2t=1acos4t=sec4ta............(5)\Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{\dfrac{a}{{{\sin }^{2}}t}}{{{a}^{2}}\dfrac{{{\left( 1-{{\sin }^{2}}t \right)}^{2}}}{{{\sin }^{2}}t}}=\dfrac{1}{a{{\cos }^{4}}t}=\dfrac{{{\sec }^{4}}t}{a}............(5)

Hence, d2ydt2=asint\dfrac{{{d}^{2}}y}{d{{t}^{2}}}=-a\sin t and d2ydx2=sec4ta\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{{{\sec }^{4}}t}{a} is the correct answer.

Note: In these types of questions when we don’t have the direct relation between yy and xx then we first calculate dydt\dfrac{dy}{dt} and dxdt\dfrac{dx}{dt} then divide to get dydx\dfrac{dy}{dx}. Also, the main crux is to use the chain rule properly and substitute the value of derivatives in the expressions and get the desired value. There are a lot of computations and care must be taken not to make any silly mistakes.