Solveeit Logo

Question

Question: If I<sub>n</sub> = ![](https://cdn.pureessence.tech/canvas_119.png?top_left_x=772&top_left_y=1095&wi...

If In = dx, then I1, I2, I3,…..are in –

A

A.P.

B

G.P.

C

H.P.

D

None of these

Answer

A.P.

Explanation

Solution

We have In =dx

\ In + In+2 – 2In+1

=0π\int _ { 0 } ^ { \pi } (1sin2nx)+(1sin(2n+4)x)2(1sin(2n+2)x)1cos2x\frac { ( 1 - \sin 2 n x ) + ( 1 - \sin ( 2 n + 4 ) x ) - 2 ( 1 - \sin ( 2 n + 2 ) x ) } { 1 - \cos 2 x }dx

=0π\int _ { 0 } ^ { \pi } 2sin(2n+2)x(sin(2n+4)x+sin2nx)1cos2x\frac { 2 \sin ( 2 n + 2 ) x - ( \sin ( 2 n + 4 ) x + \sin 2 n x ) } { 1 - \cos 2 x }dx

=2sin(2n+2)x2sin(2n+2)xcos2x1cos2x\frac { 2 \sin ( 2 n + 2 ) x - 2 \sin ( 2 n + 2 ) x \cdot \cos 2 x } { 1 - \cos 2 x }dx

20π\int _ { 0 } ^ { \pi }sin(2n + 2)x dx = 2cos(2n+2)x2n+2\frac { - 2 \cos ( 2 n + 2 ) x } { 2 n + 2 }

= – 1n+1\frac { 1 } { \mathrm { n } + 1 } [cos (n + 1) 2p – cos 0] = – 1n+1\frac { 1 } { \mathrm { n } + 1 } [1 – 1] = 0.

\ In, In+1, In+2 are in A.P.

\ I1, I2, I3,…are in A.P.