Solveeit Logo

Question

Question: If I<sub>n</sub> = \(\int_{}^{}\frac{dx}{(x^{2} + a^{2})^{n}}\), then...

If In = dx(x2+a2)n\int_{}^{}\frac{dx}{(x^{2} + a^{2})^{n}}, then

A

I3= 14a2\frac{1}{4a^{2}} . x(x2+a2)2\frac{x}{(x^{2} + a^{2})^{2}}+ 34a2\frac{3}{4a^{2}}I2

B

I3= 1a2\frac{1}{a^{2}}.x(x2+a2)2\frac{x}{(x^{2} + a^{2})^{2}}+ 34a2\frac{3}{4a^{2}}I2

C

I3= 14a2\frac{1}{4a^{2}} . x(x2+a2)2\frac{x}{(x^{2} + a^{2})^{2}}34a2\frac{3}{4a^{2}}I2

D

None of these

Answer

I3= 14a2\frac{1}{4a^{2}} . x(x2+a2)2\frac{x}{(x^{2} + a^{2})^{2}}+ 34a2\frac{3}{4a^{2}}I2

Explanation

Solution

In = (x2+a2)\int_{}^{}{(x^{2} + a^{2})}–n. 1 dx

(Integrating by parts)

= x(x2+a2)n\frac{x}{(x^{2} + a^{2})^{n}}(n)\int_{}^{}{(–n)} (x2 + a)–n–1 . 2x . x dx

= x(x2+a2)n\frac{x}{(x^{2} + a^{2})^{n}} + 2nx2(x2+a2)n+1\int_{}^{}\frac{x^{2}}{(x^{2} + a^{2})^{n + 1}} dx

= x(x2+a2)n\frac{x}{(x^{2} + a^{2})^{n}} + 2n x2+a2a2(x2+a2)n+1\int_{}^{}\frac{x^{2} + a^{2} - a^{2}}{(x^{2} + a^{2})^{n + 1}}dx

= x(x2+a2)n\frac{x}{(x^{2} + a^{2})^{n}}+ 2n In – 2a2 n In + 1

Ž In+1 = 12na2\frac{1}{2na^{2}} . x(x2+a2)n\frac{x}{(x^{2} + a^{2})^{n}} + (2n1)2na2\frac{(2n - 1)}{2na^{2}} In Put n = 2,

I3 = 14a2\frac{1}{4a^{2}} x(x2+a2)2\frac{x}{(x^{2} + a^{2})^{2}} + 34a2\frac{3}{4a^{2}} I2 .