Question
Question: If I<sub>n</sub> = \(\int_{}^{}\frac{dx}{(x^{2} + a^{2})^{n}}\), then...
If In = ∫(x2+a2)ndx, then
A
I3= 4a21 . (x2+a2)2x+ 4a23I2
B
I3= a21.(x2+a2)2x+ 4a23I2
C
I3= 4a21 . (x2+a2)2x– 4a23I2
D
None of these
Answer
I3= 4a21 . (x2+a2)2x+ 4a23I2
Explanation
Solution
In = ∫(x2+a2)–n. 1 dx
(Integrating by parts)
= (x2+a2)nx – ∫(–n) (x2 + a)–n–1 . 2x . x dx
= (x2+a2)nx + 2n∫(x2+a2)n+1x2 dx
= (x2+a2)nx + 2n ∫(x2+a2)n+1x2+a2−a2dx
= (x2+a2)nx+ 2n In – 2a2 n In + 1
Ž In+1 = 2na21 . (x2+a2)nx + 2na2(2n−1) In Put n = 2,
I3 = 4a21 (x2+a2)2x + 4a23 I2 .