Question
Question: If I<sub>n</sub> = \(\int_{}^{}\cot^{n}\)x dx, then I<sub>0</sub> + I<sub>1</sub> + 2(I<sub>2</sub> ...
If In = ∫cotnx dx, then I0 + I1 + 2(I2 + I3+ …. + I8) + I9 +
I10 =
A
–∑k=19kcotkx
B
∑k=19k!cotkx
C
∑k=11010cotkx
D
–∑k=110kcotkx
Answer
–∑k=19kcotkx
Explanation
Solution
In =∫cotnx dx =∫cotn−2x cot2x dx
= ∫cotn−2x(cosec2x – 1)dx = ∫cotn−2x cosec2 x dx – In–2
Thus, In + In – 2 = – n−1cotn−1x ...(i)
I0 + I1 + 2(I2 + …… + I8) + I9 + I10
= (I0 + I2) + (I3 + I1) + (I4 + I2) + (I5 + I3) + (I6 + I4) +(I7 + I5) + (I8 + I6) + (I9 + I7) + (I10 + I8) = – (1cotx+2cot2x+....+9cot9x) [using (i)]
= –∑k=19kcotkx