Question
Question: If I<sub>n</sub> = \(\int_{0}^{\pi/2}x^{n}\)sinx dx then I<sub>7</sub> + 42 I<sub>5</sub> =...
If In = ∫0π/2xnsinx dx then I7 + 42 I5 =
A
(2π)7
B
(2π)6
C
7(2π)6
D
7(2π)7
Answer
7(2π)6
Explanation
Solution
In=∫0π/2xnsinx dx = [xn(−cosx)]0π/2–
∫0π/2nxn−1 (– cos x)dx
= n∫0π/2xn–1 cosx dx
= n [[xn−1(sinx)]0π/2−(n−1)∫0π/2xn−2sinxdx]
In = n (2π)n−1– (n – 1)n In–2 put n = 7