Solveeit Logo

Question

Question: If I<sub>n</sub> = \(\int_{0}^{\pi/2}x^{n}\)sinx dx then I<sub>7</sub> + 42 I<sub>5</sub> =...

If In = 0π/2xn\int_{0}^{\pi/2}x^{n}sinx dx then I7 + 42 I5 =

A

(π2)7\left( \frac{\pi}{2} \right)^{7}

B

(π2)6\left( \frac{\pi}{2} \right)^{6}

C

7(π2)6\left( \frac{\pi}{2} \right)^{6}

D

7(π2)7\left( \frac{\pi}{2} \right)^{7}

Answer

7(π2)6\left( \frac{\pi}{2} \right)^{6}

Explanation

Solution

In=0π/2xn\int_{0}^{\pi/2}x^{n}sinx dx = [xn(cosx)]0π/2\left\lbrack x^{n}( - \cos x) \right\rbrack_{0}^{\pi/2}

0π/2nxn1\int_{0}^{\pi/2}{nx^{n - 1}} (– cos x)dx

= n0π/2\int_{0}^{\pi/2}{}xn–1 cosx dx

= n [[xn1(sinx)]0π/2(n1)0π/2xn2sinxdx]\lbrack\lbrack x^{n - 1}(\sin x)\rbrack_{0}^{\pi/2} - (n - 1)\int_{0}^{\pi/2}x^{n - 2}\sin xdx\rbrack

In = n (π2)n1\left( \frac{\pi}{2} \right)^{n - 1}– (n – 1)n In–2 put n = 7