Question
Question: If I<sub>n</sub> = \(\int _ { 0 } ^ { 1 } \frac { d x } { \left( 1 + x ^ { 2 } \right) ^ { n , } }\...
If In = ∫01(1+x2)n,dx nÎN, then which of the following
statement holds good ?
A
2n In + 1 = 2– n + (2n – 1)In
B
I2 = 8π+41
C
I2 = 8π−41
D
I3 = 16π−485
Answer
2n In + 1 = 2– n + (2n – 1)In
Explanation
Solution
In =
= [(1+x2)x]01 + ∫(1+x2)n+12nx2dx
= 2–n + 2nIn – 2nIn+1