Solveeit Logo

Question

Question: If I<sub>m, n</sub> = \(\int_{}^{}\cos^{m}\)x sin nx dx, then 7I<sub>4, 3</sub> – 4I<sub>3, 2</sub> ...

If Im, n = cosm\int_{}^{}\cos^{m}x sin nx dx, then 7I4, 3 – 4I3, 2 =

A

Constant

B

–cos2 x + c

C

– cos4 x cos3x + c

D

cos 7x – cos4x + c

Answer

– cos4 x cos3x + c

Explanation

Solution

Integrating by parts we have

I4, 3 = – cos3x.cos4x3\frac{\cos 3x.\cos^{4}x}{3}43\frac{4}{3} cos3x.sinx.cos3xdx\int_{}^{}{\cos^{3}x.\sin x.\cos 3xdx}

But sinx. Cos 3x = – sin2x + sin 3x. cos x.

So I4, 3 = – cos3x.cos4x4\frac{\cos 3x.\cos^{4}x}{4} + 43\frac{4}{3}

cos3x.sin2xdx\int_{}^{}\cos^{3}x.\sin 2xdx43\frac{4}{3} cos4x.sin3xdx\int_{}^{}{\cos^{4}x}.\sin 3xdx + C

= – cox3x.cos4x3\frac{cox3x.\cos^{4}x}{3} + 43\frac{4}{3} I3, 243\frac{4}{3} I4, 3 + C

Therefore, 73\frac{7}{3} I4, 343\frac{4}{3} I3, 2 = – cos3x.cos4x3\frac{\cos 3x.\cos^{4}x}{3} + C Or 7I4, 3 – 4I3, 2 = – cos 3x. cos4x + C