Question
Question: If I<sub>m, n</sub> = \(\int_{}^{}\cos^{m}\)x sin nx dx, then 7I<sub>4, 3</sub> – 4I<sub>3, 2</sub> ...
If Im, n = ∫cosmx sin nx dx, then 7I4, 3 – 4I3, 2 =
A
Constant
B
–cos2 x + c
C
– cos4 x cos3x + c
D
cos 7x – cos4x + c
Answer
– cos4 x cos3x + c
Explanation
Solution
Integrating by parts we have
I4, 3 = – 3cos3x.cos4x – 34 ∫cos3x.sinx.cos3xdx
But sinx. Cos 3x = – sin2x + sin 3x. cos x.
So I4, 3 = – 4cos3x.cos4x + 34
∫cos3x.sin2xdx – 34 ∫cos4x.sin3xdx + C
= – 3cox3x.cos4x + 34 I3, 2 – 34 I4, 3 + C
Therefore, 37 I4, 3 – 34 I3, 2 = – 3cos3x.cos4x + C Or 7I4, 3 – 4I3, 2 = – cos 3x. cos4x + C